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Abstract

Interest in medical information retrieval has risen significantly in the last few years. The

Internet has become a primary source for consumers looking for health information and

advice; however, their lack of expertise causes a language and knowledge gap that affects

their ability to properly formulate their information needs. Health experts also struggle to

efficiently search the large amount of medical literature available to them, which impacts

their ability of integrating the latest research findings in clinical practice. In this dissertation,

I propose several methods to overcome these challenges, thus improving search outcomes.

For queries issued by lay users, I introduce query clarification, a technique to identify the

most appropriate expert expression that describes their information need; such expression

is then used to expand the query. I experiment with three existing synonym mappings, and

show that the best one leads to a 7.3% improvement over non-clarified queries. When a clas-

sifier that predicts the most appropriate mapping for each query is used, an additional 5.2%

improvement over non-clarified queries is achieved. Furthermore, I introduce a set of features

to capture semantic similarity between consumer queries and retrieved documents, which are

then exploited by a learning to rank framework. This approach yields a 26.6% improvement

over the best known results on a dataset designed to evaluate medical information retrieval

for lay users.

To improve literature search for medical professionals, I propose and evaluate two query

reformulation techniques that expand complex medical queries with relevant latent and

explicit medical concepts. The first is an unsupervised system that combines a statistical

iii



query expansion with a medical terms filter, while the second is a supervised neural con-

volutional model that predicts which terms to add to medical queries. Both approaches

are competitive with the state of the art, achieving up to 8% improvement in inferred

nDCG. Finally, I conclude my dissertation by showing how the convolutional model can

be adapted to reduce clinical notes that contain significant noise, such as medical abbre-

viations, incomplete sentences, and redundant information. This approach outperforms the

best query reformulation system for this task by 27% in inferred nDCG.

Index words: Query reformulation, Health informatics, Information retrieval,
Learning to rank, Convolutional neural networks, Web search
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Chapter 1

Introduction

Among domain specific applications, medical information retrieval has gained significant

prominence in the last few years.

On one hand, the Internet has become a primary source for consumer health informa-

tion seeking. A recent survey [41] showed that 72% of all adults in the U.S. seek information

about health issues online (mostly focusing on diseases and treatments), while 8% have asked

questions or shared their experiences [40]. As a result, many approaches designed to improve

consumer health search have been proposed (e.g., [173, 84, 109, 101, 177, 130]). Furthermore,

researchers have studied how to characterize the behavior of lay people looking for health

information online (e.g., [103, 152, 153, 154, 165, 167, 169, 171]), analyze aggregate health

trends (e.g., [23, 42, 166, 162, 105, 161, 79]), and identify search engine users affected by

specific diseases (e.g., [104, 106, 168, 129, 10]). However, efficiently finding medical infor-

mation remains a challenge for lay users as many online resources, even those addressed to

consumers, employ abundant medical terminology that consumers might not know or be

familiar with [174].

On the other hand, the amount of medical information available to health experts has

increased dramatically in the last few years. For example, the number of articles in PubMed1,

one of the largest repository of biomedical literature, increases by approximately 1 million

documents each year2; today, it is over 28 million; this growth has been directly attributed

to rapid advances in clinical research [36]. At the same time, the adoption rate of electronic

health records (EHR) soared in the last few years, going from 41% of hospitals in 2012
1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.nlm.nih.gov/bsd/licensee/baselinestats.html
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to 59% in 2015 in the United States alone [3]. Large repositories of research and clinical

information are both a blessing and a curse for the medical community: while they enable

clinical practices such as evidence-based [49] and precision medicine [29], they also represent

a new set of challenges for health professionals, who often struggle to keep up-to-date with

current literature [15, 142, 97] or adapt to new technologies [67, 34, 56]. Understandably,

this has led to the introduction of shared tasks designed to advance the state of the art

in medical search systems: OHSUMED [61] focused on retrieving biomedical literature for

short, keyword-heavy clinical queries; TREC Genomics [60] tackled search in support of

genomics research (i.e., retrieval of literature about protein interaction, gene mutations,

etc.); ImageCLEFmed [72] studied multimodal retrieval for clinical practice; MedTrack [150,

151] was concerted with improving retrieval of clinical notes; the Clinical Decision Support

(CDS) track at TREC was created to evaluate search systems designed to retrieve relevant

literature for a patient’s clinical note [116, 117, 118]. The latter task is, in many ways, a

good model for complex medical search tasks in support of clinical practice:

• The ability to retrieve relevant literature in support of the medical decision process is

a pressing need, as indicated by the popularity of evidence-based medicine.

• Health professionals struggle to keep up with advances in clinical research.

• PubMed and other search systems currently used by clinicians to retrieve literature

are primarily designed to handle short, keyword-heavy queries3.

Over the years, several approaches have been proposed to improve information systems

designed to support clinical practice; some leverage medical ontologies, such as Medical

Subject Headings4 (MeSH) or the Unified Medical Language System5 (UMLS) to perform

query reformulation (e.g., [134, 35, 84, 86, 83, 94, 95]); others explored the use of pseudo
3For example, PubMed search tool can only perform Boolean search; therefore, adapting clinical

note to an appropriate Boolean query is a time-consuming task that requires clinical expertise, as
well as technical knowledge of PubMed itself.

4https://www.nlm.nih.gov/mesh/
5https://www.nlm.nih.gov/research/umls/

2
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relevance feedback (PRF) (e.g., [2, 25, 65, 178]). Systems combining the two have also been

proposed (e.g., [138, 7, 143, 65, 131, 128]). Furthermore, some have exploited the use of

multiple auxiliary collections for both clinical notes and medical literature retrieval (e.g.,

[179, 99]). Finally, graph-based approaches have been proposed as a mean to perform query

expansion (e.g., [35, 53, 59, 125]) and query to document inference (e.g., [76, 80, 48]).

In this dissertation, I will argue that challenges in health search are caused by a knowl-

edge and language gap both laypeople and health experts suffer from; I will propose several

methods to reduce it, thus improving the search outcomes. While previous works acknowl-

edged the effect of this gap on medical search, this dissertation explicitly frames query

reformulation with respect to this gap for both consumer and health professionals. This gap

is directly tied to several unique aspects of the medical domain:

• Domain breath: from healthcare management to genomics, the medical domain

encompasses a vast set of disciplines and fields. Its broadness poses challenges in

defining what a domain expert is, as an in-depth knowledge in a field does not neces-

sarily translate to familiarity with others.

• Specialized vocabulary: the medical domain is characterized by a rich and wide

vocabulary, routinely used by health professional to describe diseases, symptoms, and

treatments. This represents a challenge not only for medical entity recognition systems

[124], but also for health professionals, as it can lead to clinical errors [75]. Such

specialized language is also widely used on health websites that supposedly target

consumers, which leads to a higher-than-recommended readability level [52, 63, 149].

• Synonymy and polysemy: in the medical domain, the same concept is often repre-

sented by multiple expressions (synonymy; for example, alopecia and hair loss refer to

the same condition) or the same expression can stand for two or more concepts (poly-

semy; for example, progesterone can either refer to the hormone or the pharmacological

substance.)
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These aspects hinder the search experience of different cohorts of users differently, mostly

depending on their level of expertise: for lay people, the complexity of the medical vocabulary

represents a significant barrier for retrieving relevant and reliable information. For experts,

the gap could be due to searching in a field different from their area of expertise or due to

time constrains (physicians in demanding clinical setting might not have sufficient time to

craft an appropriate Boolean query to submit to PubMed.)

1.1 Hypotheses

The challenges described in the section above can be reformulated in two sets of hypotheses,

which will be discussed in the reminder of this dissertation.

Hypothesis 1: Lay health searchers suffer from language gap that can be bridged using

semantic analysis to reformulate queries or rerank search results.

The first part of my dissertation is concerned with examining, quantifying, and ultimately

reducing the language gap lay people suffer from in consumer-oriented health searches. My

efforts in this domain are detailed in Chapter 2.

Hypothesis 1.1: The language gap between laypeople and online health resources

negatively affects their ability to retrieve answers to health questions.

I show and quantify the language and knowledge gap laypeople suffer from through

a task-based experiment, which is described in Section 2.2.2. Users were asked to

find the answer to specific questions using search results from a commercial search

engine. Some of the users were health experts, while the other were laypeople.

Results demonstrating the negative effect of the language gap are presented in

Section 2.2.3.1.
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Hypothesis 1.2: Query reformulation reduces language gap of laypeople searching

health-related information online.

I validate this hypothesis by showing that reformulated queries are preferred by lay

people, lead to better understanding of health topics, and retrieve more relevant

documents. Three existing laypeople-to-expert synonym mappings (Section 2.2.1.1)

were used to reformulate queries and reduce the language gap through a process

called “query clarification”. The clarification process is detailed in Section 2.2.1.2.

Query clarification is evaluated in Section 2.2.3.1. Furthermore, a classifier designed

to select the most appropriate synonym mapping is also proposed and evaluated

favorably, as shown in Section 2.2.4.

Hypothesis 1.3: Re-ranking search results based on semantic health features

improves search quality for consumer health queries.

Medical web pages — even those addressed to consumers — are likely to use proper

medical terminology laypeople might not be familiar with. This mismatch is another

form of language gap between lay people and health resources. I show how this

gap can be closed by introducing a supervised learning to rank approach for this

problem. In particular, I propose a novel set of features that capture semantic

similarity between queries and web pages; this approach is detailed and validated

in Section 2.3.

Hypothesis 2: Reformulating complex medical queries by taking into account explicit and

latent medical concepts improves retrieval of medical literature.

As previously mentioned, medical experts also struggle to formulate appropriate medical

questions, either due to lack of knowledge in a specific field of medicine, or because they

cannot invest time in formulating complex Boolean queries. In Chapter 3, I investigate the

5



use of supervised and unsupervised techniques to reformulate patient clinical notes, such

that they can be employed as queries for medical literature retrieval. In particular, I focus

on proving the following hypotheses:

Hypothesis 2.1: Well-formed clinical notes can be expanded using unsupervised or

supervised techniques to increase the precision of retrieval systems.

In Section 3.2, I discuss two techniques — one supervised, the other unsupervised —

that generate queries suitable for medical literature retrieval. Both take advantage

of pseudo relevance feedback to obtain a list of candidate terms for query expansion;

the unsupervised method uses term distribution heuristics to filter candidate terms,

while the supervised method learns to predict the importance of candidate terms

using a convolutional neural model. Performance of both models are thoroughly

analyzed in Section 3.4; both are competitive with the state of the art, achieving

up to 8% improvement in nDCG.

Hypothesis 2.2: Clinical notes that contain significant noise (i.e., medical and

clinical abbreviations, incomplete sentences, redundant or unnecessary information)

can be reduced to be used as queries for medical literature retrieval.

As the implementation of clinical notes varies from institution to institution, there

is no consistent format in which clinical notes are written [66]. Notes in publicly

available collections make heavy use of abbreviations, are heavily comprised of

not-fully specified sentences, and include unnecessary information about patients’

treatment and hospitalization history [71, 121, 145, 146, 147]. In Section 3.5, I detail

a system designed to reformulate noisy clinical notes; the proposed method achieves

an improvement of 67% over the unmodified clinical note, and a 27% improvement

over state of the art query reduction methods.

6



Through proving the hypotheses listed above, I will demonstrate, in Chapters 2 and

3, that challenges connected with the effect of the language and knowledge gap can be

effectively mitigated to improve search outcomes in the medical domain. Then, in Chapter 4,

I will examine the impact of this dissertation and discuss potential future work that could

extend this research effort.

Parts of Chapters 2 and 3 are reproductions of my jointly authored publications [27, 125,

126, 127, 128, 130, 131, 132].
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Chapter 2

Laypeople as Health Searchers

As pointed out in Chapter 1, the Internet has become a primary source of health information

for the majority of adults living in the United States [41, 40]. Lay people have come to rely

on the Internet as a tool to seek information about specific diseases or medical problems.

However, this process is often challenging due to the gap between language used by con-

sumers to describe their conditions and proper medical vocabulary. Trustworthy health care

resources, even those addressed to consumers, employ appropriate medical terminology; yet

laypeople do not have the necessary knowledge to express their information need using such

vocabulary, thus struggling to satisfy their information needs [174].

This gap is difficult to overcome either by searchers, who need to learn a specialized

vocabulary to describe their information need, or by experts who are trying to assist them,

as they have to speculate on the ways in which laypeople will phrase their intent. This

language gap was noted as one of the primary reasons for failures of retrieval engines [21].

In this chapter, I focus on understanding and reducing such language gap. In particular,

Section 2.2 will discuss how to quantify this language gap; furthermore, a method to reduce

the language gap with query reformulation will be introduced. I will be referring to this

process as “query clarification”, as the lay concept in each query is “clarified” using the

equivalent expert concept. This approach takes advantage of three existing laypeople-to-

expert synonym mappings; each map associates one or more layperson expressions to one

or more expressions used by medical professionals. Then, in Section 2.3, I will propose and

evaluate a learning to rank (LtR) approach that leverages statistical and semantic features

8



to address the language gap. LtR algorithms have been successfully employed to promote

understandability in medical health queries [101] and retrieve medical literature [81].

The reminder of this chapter is organized as follows: in Section 2.1, I will present an

overview of research efforts related to improving consumer health search. Then, in Sec-

tion 2.2, the process of query clarification will be formally introduced and its impact eval-

uated, addressing hypotheses 1.1 and 1.2. Section 2.3 presents the methodology and the

results of the proposed LtR system, addressing 1.3. Finally, in Section 2.4, I will provide a

brief summary of the innovations described in this chapter.

2.1 Related Works

Interest in medical search is steadily increasing, and many approaches to improve its accuracy

have been proposed. For laypeople, researchers have focused on building systems to retrieve

relevant and trustworthy health information on the web.

2.1.1 Laypeople as Health Information Seekers

Interaction between consumer seeking health information and web search engines has been

extensively studied in recent years. Early on, Eysenbach and Köhler [39] noticed that con-

sumers’ query formulation is often suboptimal. Moreover, they observed that laypeople

struggle with identifying trustworthy websites. Spink et al. [133] examined a large query

log from Excite1 and AlltheWeb2. Their findings suggest that most consumers fail to under-

stand the limitations of web search when searching medical advices; furthermore, they rarely

reformulate queries to include synonyms or alternate health expressions that could increase

the quality of retrieved results. Toms and Latter [144] also noticed that consumers are often

unable to properly formulate queries when looking for health resources.
1http://www.excite.com/
2http://www.alltheweb.com/
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More recently, Cartright, White, and Horvitz [22] studied the behavior of consumers

when searching for health information. Their findings suggest that users perform evidence-

directed and hypothesis-directed exploratory health searches. Powell et al. [110] conducted

a comparative study between popular search engines (Google, Bing, Yahoo! and Ask.com)

in retrieving health information about breast cancer. They noticed that, while all the search

engines were able to provide somewhat satisfactory results, the rankings of retrieved web

page was often suboptimal, therefore leaving room for improvement to help users get more

relevant information.

Finally, Zuccon, Koopman, and Palotti [180] analyzed the results retrieved by two com-

mercial web search engine (Google and Bing) on a set of queries formulated by laypeople

describing medical symptoms. For both engines, only three of the top ten retrieved results

were both relevant and from trustworthy websites. Their analysis suggests that current

search engines are not sufficiently equipped to satisfy the information need associated with

the laymen queries in their dataset.

2.1.2 Influence of Domain Expertise in Health Search Behaviors

Researches have also studied the differences between experts and laypeople when performing

health-related searches. White, Dumais, and Teevan [153] analyzed interaction logs from

Google, Yahoo!, and Microsoft Live Search. Based on their analysis, the authors concluded

that health experts—compared to laypeople—are more likely to visit authoritative medical

websites, issue long queries, use domain appropriate terms, spend more time searching, and

reformulate queries often. Palotti, Hanbury, and Müller [100] proposed a set of features that

could help discern queries issued by health professionals from queries issued by laypeople.

While our experiments confirm some of the aforementioned findings, our work focuses

on how to bridge the gap between laypeople and medical experts rather than analyzing the

differences between the two groups.
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2.1.3 Efforts in Improving Consumer Health Search

The interest in helping laypeople access reliable medical resources has increased in the last

few years. Zeng et al. [173] started the Consumer Health Vocabulary (CHV) initiative, a

resource designed to link medical terms and expression used by consumers to terms health

care professionals use. CHV is included in UMLS since version 2011AA. Similarly, [160]

constructed MedSyn, a database that includes the mapping of layperson vocabulary to 12

expert terms extracted from both UMLS and social media posts; Yates, Goharian, and

Frieder [163] proposed a system to programmatically extract synonyms from a corpus of

medical forum posts; they utilized their approach later to extract the mentions of adverse

drug reactions (ADR) from social media [161]. Can and Baykal [17] created MedicoPort, a

retrieval engine that enhances health queries using UMLS. Luo et al. [84] built MedSearch,

a search engine designed to process long, discursive queries and retrieve trustworthy results

from a set of hand picked sources. The proposed system increased search results diversity,

as well as suggesting new queries.

Other efforts include Stanton, Ieong, and Mishra [137], who studied the use of circumlo-

cution in diagnostic medical queries (i.e., situations in which a non-expert uses many words

to describe a symptom in place of the appropriate medical term). The authors proposed a

supervised approach to link circumlocutory queries to medical concepts. Shen et al. [123] con-

sidered a concept-based similarity model; MetaMap [6] was used to extract medical concepts

from the queries and documents; furthermore, the authors experimented with using concept-

based pseudo relevance feedback. Their best approach also resulted in a 11% improvement

over the baseline. Oh and Jung [98] used a combination of rule-based expansion of medical

abbreviations, expansion through terms in the clinical notes, and pseudo relevance feedback.

Their system achieved a 8% improvement over the baseline. Palotti et al. [101] suggested to

use statistical and readability features to promote web pages that are relevant and are at

an appropriate reading level for lay people.
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In recent years, a shared task aimed at improving consumer health search was introduced

at the CLEF eHealth Evaluation Lab [45]; the task ran in subsequent years [46, 182, 181].

In the first three editions, partecipating systems were asked to retrieve relevant documents

from the Khreshmoi collection [51], a set of certified websites by the Health-On-Net foun-

dation3 and other hand-picked trusted resources; more recently, a general-domain dataset

(ClueWeb 12 Category B134) was used as test collection, making this shared task more

realistic. Alongside some collaborators, this dataset was used to explore the use of semantic

relationships between terms for query expansion [125]. In a closely related work, Goeuriot,

Kelly, and Leveling [44] provided a more detailed analysis of the impact of query complexity

on the performance of the participating systems; their findings suggest that the increase in

query complexity affected the retrieval performances.

2.2 Closing the Language Gap through Query Clarification

Our goal was to evaluate whether the language gap affects negatively the search result

accuracy; further, we wanted to evaluate whether three synonym mappings could be used to

reduce the language gap and improve the quality user search experience and the relevancy

retrieved results. As such, we performed a task-bases user study as shown in [130].

2.2.1 Methodology

We bridge the gap between laypeople and experts in the health search domain to improve

users’ ability to answer medical questions. As such, we investigated using three different

synonym mappings to perform query clarification.

For each query, we generated three clarified queries using the synonym mappings

described in Section 2.2.1.1. Each mapping associates an expression from layperson’s vocab-

ulary (i.e., a word or phrase a non-expert would use to describe a health concept) to
3Health On the Net (HON) Foundation (http://www.healthonnet.org) is an organization that

certifies those health-related websites that meet specific reliability standards (“HONcode” of conduct)
4http://www.lemurproject.org/clueweb12.php
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one or more expressions used by medical professionals, which we refer to as “clarification

candidates”. Section 2.2.1.2 describes the algorithm used to select the most appropriate

expression among clarification candidates.

For each of the four query versions (the original and the three derived from clarification),

we used Bing to retrieve relevant search results. In Section 2.2.1.3, we discuss the overlap

between each synonym mapping, as well as the overlap between the retrieved results.

2.2.1.1 Medical Synonym Mappings

The following are the three medical synonym mappings that are utilized here to clarify

layperson user queries; some filtering is done to adjust to our approach.

Behavioral

Based on Yom-Tov and Gabrilovich [166], this mapping links expressions commonly used

by laypeople to describe their medical condition to 195 symptoms listed in the International

Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-

10)5. The synonyms were generated in two ways. First, the most frequent search terms

that led users to click on Wikipedia pages describing symptoms were selected. Second,

frequently occurring lexical affinities [20] were added to the list. Lexical affinities are word

pairs appearing in close proximity in the 50 highest ranked search results retrieved when

symptoms were used as queries. The list was validated by medical professionals, and 88%

of terms were found to be appropriate expansion terms for the symptoms. The list was

generated using search information from the Yahoo! search engine collected in 2010. A

detailed description of this mapping can be found in [166].

MedSyn

Based on Yates and Goharian [159], this synonym mapping focuses on diseases and symp-

toms. It was generated from a subset of UMLS filtered to remove irrelevant terms types.
5http://www.who.int/whosis/icd10/
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SIDER 2 [77] was used to keep only terms with UMLS semantic types that were assigned

to side effects listed on drug labels. Synonyms of these terms were identified using UMLS’

semantic network and added to the map. Finally, relevant common terms from a drug review

data set [159] were added to the map as synonyms of the appropriate terms. To ensure that

only expert terms were added to queries, we kept only terms designated as preferred terms6

in UMLS as candidate expressions (i.e., expressions used to clarify a query).

DBpedia

This mapping takes advantage of Wikipedia redirect pages as a mean to map laypeople

expressions to expert terminology. Redirect pages are meant to route users to the most

appropriate expression for a concept. For example, the Wikipedia page for “acid reflux”7

redirects to “gastroesophageal reflux disease”8. Wikipedia redirect pages have been success-

fully employed in building general ontologies [140], creating domain specific thesauri [93], and

improving query reformulation [92, 158]. We took advantage of DBpedia9, a project aimed

at extracting structured information from Wikipedia, to parse redirect pages. Through this

knowledge base, we label two expressions X and Y as synonyms if there exits a redirect

from page X to page Y. To prevent query drift, we only kept those redirect terms which

led to a Wikipedia page describing a medical symptom, drug, or disease. This ensures that

those terms in the query that are not health-related are not attempted to be clarified.

2.2.1.2 Candidate Selection

In some instances, a synonym mapping associates an expression (which could be either a

word or a phrase) in a query with more than one clarification candidate {c1, . . . , cm}. How-

ever, not all clarification candidates are equally suitable for expansion: some are more apt at

representing the medical concept in the query and are therefore preferred in medical pages
6In UMLS, an expression is labeled as preferred term if it is found to be the most appropriate to

represent a concept.
7http://en.wikipedia.org/wiki/Acid_reflux/
8http://en.wikipedia.org/wiki/Gastroesophageal_reflux_disease/
9http://dbpedia.org/, accessed July 2013
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containing reliable information. Therefore, our goal is to select the clarification candidate

ck that better represents the medical concept expressed by consumers in the query. The fol-

lowing heuristic was considered to achieve this goal: when multiple clarification candidates

are identified by a mapping, we choose the candidate ck whose probability of appearing in

health-related Wikipedia pages is maximized. Wikipedia was deemed appropriate to deter-

mine the best clarification candidate because of its strict manual of style10 and the expertise

of the editors curating the Medicine Portal11 (more than half of the editors are medical

practitioners, 85.5% holds a university degree [55]).

Let W = {Pi}i=|W|i=1 be the set of all pages in English Wikipedia (special pages, such as

category or disambiguation pages, are not included),WH the set of all health-related pages.

Then, for each candidate term tj ∈ T , we estimate its odds ratio of being health related as

follows:

OR(tj) =
Pr{tj ∈ Pi ∧ Pi ∈ WH}
Pr{tj ∈ Pi ∧ Pi ∈ W}

(2.1)

The two probabilities are estimated using Maximum Likelihood Estimation (MLE); that

is, they are calculated by dividing the number of documents with term tj by the total number

of documents.

In accordance with the previously stated heuristic, the candidate maximizing the fol-

lowing equation is selected for clarification:

argmax
ck∈{c1,...,cm}

(OR(ck)) (2.2)

Intuitively, the more a clarification candidate appears in health-related Wikipedia pages,

the more likely it is that the candidate is the most appropriate expression to describe the

concept in the query. Therefore, we clarify a query with the expression ck that maximizes

Equation 2.1.
10http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Medicine-related_

articles
11http://en.wikipedia.org/wiki/Portal:Medicine
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Figure 2.1: A screen shot of the Wikipedia entry for “Gastroesophageal reflux
disease”. The information box is displayed on the right side of the page, highlighted in
orange. Because it contains several medically-related identification codes, this page was
identified as health-related.

The set W was defined over a snapshot of Wikipedia obtained on November 4, 2013. We

took advantage of the content of the information box (e.g., Figure 2.1) of each Wikipedia

entry to define the set H(W) (i.e., to determine which pages should be considered health-

related). In detail, any page whose information box contained one of the following medically-

related identification codes was designated as health-related: MedlinePlus, DiseasesDB,

eMedicine, MeSH, or OMIM. Of 2, 794, 145 unique pages indexed, about 0.88% (24, 654

pages) were identified as health-related.
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Table 2.1: Size of the synonym mappings.

Unique expressions Synonym pairs
Behavioral 593 611

MedSyn 6, 760 43, 703

DBpedia 64, 652 177, 116

We avoided augmenting a query with more than one clarification candidate to minimize

the likelihood of query drift. Because all queries in the dataset contain no more than a

medical concepts, if multiple expressions in a query can be mapped to an expert term using

a synonym mapping, we consider the longest, as it fully captures the information need of

the user. If multiple expressions of the same length can be clarified, we choose the one with

the highest conditional probability.

2.2.1.3 Overlap Between Mappings

We compare and contrast the synonym mappings introduced in Section 2.2.1.1 as a means of

providing a greater understanding of their differences and similarities. In detail, we examine

the size of the mappings, as well as the overlap between each pair. Finally, we analyze the

overlap of set of results retrieved for each query in our dataset before and after being clarified

by each synonym mapping.

Table 2.1 shows the size of each synonym mapping in terms of unique expressions and in

terms of synonym pairs (i.e., pairs of non-expert expression X and expert expression Y ). An

expression may either be a single word (“GERD”) or a multi word phrase (“gastroesophageal

reflux disease”). Behavioral has the fewest number of expressions, whereas DBpedia has the

most. In fact, Behavioral is much closer to a one-to-one mapping than MedSyn and DBpedia,

as both include relationships between many more pairs of synonyms. Note, however, that

Behavioral only includes medical symptoms, which may explain its size in comparison to the

other synonym mappings. The size difference shown in Table 2.1 unsurprisingly affects the
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Table 2.2: Percentage overlap between the lists of synonyms.

Behavioral MedSyn DBpedia
Behavioral - 21.3% (126 expressions) 98.5% (584 expressions)

MedSyn 1.9% (126 expressions) - 8.0% (540 expressions)

DBpedia 0.9% (584 expressions) 0.8% (540 expressions) -
Each cell (i, j) in the table represents the overlap of synonym mapping i with synonym
mapping j as a percentage of the size of mapping i. To better understand the relative size
of each overlap, the number of overlapping expressions is also reported.

number of clarification candidates of each mapping. Behavioral selected, on average,M=1.02

(SD=0.24) candidates per query, whileMedSyn selectedM=1.16 (SD=1.07) candidates. The

difference between the two is not statistically significant (Mann-Whitney U test, p = 0.243).

DBpdia, the largest mapping, consistently selected the largest number of candidates per

query:M=2.46 (SD=4.42) (difference is statistically significant over Behavioral andMedSyn,

p < 0.05).

The overlap between each list of synonyms is shown in Table 2.2. For each cell (i, j)

in the table, we report the overlap of synonym mapping i with synonym mapping j as a

percentage of the size of mapping i. Behavioral, the mapping with the smallest synonym list

(as shown in Table 2.1), is almost completely contained (98.5%) within DBpedia, the largest

mapping. Behavioral and MedSyn have far fewer expressions in common, as about one fifth

(21.3%) the expressions in Behavioral are also present in MedSyn.

Table 2.3 shows the overlap between the unclarified queries and the queries clarified

by each mapping (as described in Sections 2.2.1.1 and 2.2.1.2). In cases where a synonym

mapping had no clarification expression to add, we say that the null term was added; this

allowed us to compute overlap between the unclarified query (which we refer to as “no clar.”)

and each synonym mapping. By definition, “no clar.” adds the null term to each query.

MedSyn added the null term (i.e., did not add any clarification expression to the query) 30%
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Table 2.3: Query overlap between the unclarified query (“no clar.”) and the
queries clarified by each mapping.

no clar. Behavioral MedSyn DBpedia
no clar. - 2% 30% 0%

Behavioral 2% - 28% 74%

MedSyn 30% 28% - 36%

DBpedia 0% 74% 36% -
MedSyn is the most similar to the baseline, while Behavioral and DBpedia are the most
similar synonym mappings. Unlike Table 2.2, this table is symmetrical, as all queries in the
dataset were clarified using all synonym mappings.

of the time, while both Behavioral and DBpedia added a expression to the vast majority

of queries. Behavioral and DBpedia often lead to similar clarification (74% overlap), which

is to be expected given the high overlap between the two synonym lists. Finally we note

that, despite the fact that only 8% of the synonyms found in MedSyn occurred in DBpedia

(Table 2.2), the overlap in terms of expressions added to the queries by the two mapping

was considerably higher (36%). This outcome is likely due to the fact that the queries in our

dataset, which are among the 500 most common health queries on Bing (Section 2.2.2.1),

contain health expressions that are very likely to be included in both synonym mappings.

The overlap between the URLs of the retrieved results is shown in Table 2.4. Results

confirm that Behavioral and DBpedia are the most similar mappings. Both have little overlap

with the URLs of results retrieved with the unclarified query (13% and 14%, respectively); a

slight increase can be observed for both mappings when overlap is measured with respect to

the snippets of retrieved results. Queries clarified with MedSyn retrieved, on average, 38%

of the results retrieved by the unclarified query.

Summarizing our comparison, queries clarified using Behavioral and DBpedia retrieve

the most similar set of results, even though the former mapping comprises of only a small

subset of the latter. Of all synonym mappings, MedSyn yields the most similar results to the

19



Table 2.4: Overlap of the URLs of results retrieved by the unclarified query (“no
clar.”) and by the queries clarified by each mapping.

no clar. Behavioral MedSyn DBpedia
no clar. - 14% 38% 13%

Behavioral 14% - 36% 74%

MedSyn 38% 36% - 42%

DBpedia 13% 74% 42% -
MedSyn is most similar to the unexpanded baseline, but still adds a significant number of
URLs.

baseline; yet, it still adds a significant number of clarification expressions and URLs over

the unclarified query.

2.2.2 Experimental Setup for Task-based User Study

To evaluate the effectiveness of our clarification strategy, we used the three synonym lists

introduced in Section 2.2.1.1 to clarify 50 queries from a Bing query log. Details regarding the

set of queries are provided in Section 2.2.2.1. Laypeople and medical experts were enrolled

to assess the impact of the proposed methodology. For each query, we created a multiple-

choice question; participants were required to answer it to demonstrate their understanding

of the retrieved results. We overview the query creation process in Section 2.2.2.2. Query

clarification was evaluated using an online platform we introduce in Section 2.2.2.3.

All the resources detailed in this section (queries, questions, and anonymized user inter-

action reports) are publicly available at the authors’ GitHub page12.

2.2.2.1 Queries Dataset

As previously mentioned, we studied the impact of query clarification on a sample of common

health-related queries from a Bing query log. To do this, we extracted the set of all English-
12https://github.com/Georgetown-IR-Lab/query-clarification-data
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Table 2.5: An example of query in our dataset.

Mapping Query Question

no clar. excessive burping “Which of the following solution does
NOT help with excessive ructus? ” (avoiding
drinking through a straw, taking an antacid,
eating slowly, swallowing air)

Behavioral excessive burping belching

MedSyn excessive burping eructation

DBpedia excessive burping belching

The first mapping, “no clar.”, represents the original unclarified query as extracted from
the Bing query log. The last column contains the question formulated by the authors. In
parentheses we report the four corresponding answers (the correct one is in bold).

language queries submitted to Bing by users in the United States during November 2013.

This set was filtered to extract those queries which contained a symptom, drug name, or

disease name, or one of their synonyms, as listed in Wikipedia. We randomly sampled 50

out of the 500 most common queries in the resulting list. Sampling was done to reduce the

dimensionality of the dataset, thus making the experimentation more tractable.

The 50 queries in the dataset contain 93 unique terms and have an average length of 2.6

terms (median length is equal to 2). This is not statistically significantly different (rank-sum

test) from the queries in the larger set of 500 queries, which have an average length of 2.5

(median is 2) and contains 463 unique terms.

2.2.2.2 Evaluation Questions

The process laypeople follow while looking for medical information on the Internet is akin to

a task-based retrieval scenario: consumers have a specific information need that they try to

satisfy through web search engine. Thus, for our task-based experiment, we created, for each

query, a question that would estimate the quality of the retrieved results in providing helpful

information to a user. Users in our scenario are given a similar task to [58], where medical

students were asked to use a search system to gather information to answer a question.
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Such approach is also common in focus groups examining the behavior of laypeople seeking

health information on the web [39, 144]. Since a users’ ability to correctly answer questions

is uncorrelated with the number of relevant documents read [58] or precision and recall [57],

we consider the users’ question answering accuracy when we analyze our results.

Our design goal was to formulate questions that (a) were highly relevant to the query,

(b) required reading at least one, if not many, of the links shown and (c) were not easily

intelligible by reading the snippets provided with each search result. Each question was

created using the following procedure: first, the authors read the query and content of the

search results; then, they formulated a question based on the content of the retrieved web

pages; finally, they generated four possible answers—one correct, three wrong. The volume

of data needed by our study ruled out the option of proposing open questions.

2.2.2.3 Online Evaluation Platform

We developed a website (Figure 2.2) to determine the effectiveness of the proposed clarifi-

cation methodology. Through this website, laypeople and medical experts answered a set of

health-related, multiple-choice questions using a set of search results retrieved using Bing.

For each query in the dataset, we showed participants the query itself and the question

simulating the information need associated with the query. Users were asked to find the

answer to the question presented to them by using the displayed search results. We required

the participants to open (click) at least one link before choosing the correct answer among

four possible choices to prevent bias in results selection. To minimize the number of fac-

tors involved in the study, users were not allowed to modify the displayed query. For each

respondent and each query, an interaction report consisting of the links clicked and the

answer given was created.

We interleaved search results to quantify the impact of each synonym mapping we used

for query clarification. Interleaving, introduced by [68], is a technique designed to receive

implicit user feedback about two retrieval methods without introducing bias due to the
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back problems

A user has searched for 

in order to answer the following question:

Please use the search results displayed below to find out the answer to it.
Wen you’re ready, click on the “show answers” button below to reveal the answers.

“back problems”

“Back pain is usually caused by the injury to the:”

Thoracic spine

Cervical spine None of the above

Spinal cord

Usin the previous results, please select the appropriate answer 
to the quesion shown below: 

Please don’t use any external resoures to answer the question!

“Back pain is usually caused by the injury to the:”

Submit Answer

Lower Back Pain Symptoms, Diagnosis, and Treatment
http://www.spine-health.com/conditions/lower-back-pain/lower-back-pain
symptoms-diagnosis-and-treatment
Lower back pain can be caused by problems with spinal muscles, nerves, 
bones, discs or tendons. Learn about the main causes and treatment options 

Lower Back Pain Quiz: Common Causes and Other Back Problems
http://www.webmd.com/back-pain/rm-quiz-low-back-pain

Take this WebMD quiz to test your knowledge of what causes low back pain,
muscle spasms, slipped disks, and treatment options.

Queries Help

Show Answers

Figure 2.2: The main interface of the website. The top third of the screen shows the
question for the user, while the middle part displays the original query and ten interleaved
results. The bottom section shows the question which the user is asked to answer. Even
when results obtained via a clarified query are presented, the original query is shown; users
are not allowed to reformulate the query at any point. The multiple choice options to the
question are initially hidden and can be revealed by the user after opening (clicking) at least
one result.

presentation of the results. Team draft interleaving [112] was chosen for the evaluation

platform; as its name might suggest, it mimics how players are usually divided in teams

at the beginning of friendly matches. Given two ranked lists A and B of retrieved results,
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A = {a1, . . . , an}, B = {b1, . . . , bn}, we operate as follows: for each pair of results ai and

bi of rank i, an unbiased coin is flipped; if heads, ai is ranked before bi in the interleaved

set of result; if tails, bi is ranked first. As detailed in [111], team draft interleaving shows

comparable levels of expert agreement to other interleaving methods, and it is less prone to

introducing bias.

We tested query clarification among laypeople recruited using Amazon Mechanical

Turk13. Each participant was asked to answer 20 medical questions. Workers were paid

between $2.00 and $4.50 (M=$3.53, SD=$0.99), depending on when they accepted the

task. We enrolled as many workers as needed to obtain at least 5 interaction reports per

query per pair of methods. In total, 80 workers registered for the task.

We also enrolled 12 freelance medical experts using Elance14. These workers were paid

$20.00 for their efforts. We provided interleaved results retrieved using original queries and

queries clarified by MedSyn to this group of participants. MedSyn was chosen because its

promising results on preliminary tests. The size of this group was also determined by the

need of at least 5 interaction reports for each query.

2.2.3 Results

We analyzed the results collected in the two task-based retrieval experiments. In particular,

we were interested in finding out (a) whether laypeople were impacted by a language gap,

(b) whether lay users would prefer clarified queries, and (c) whether clarification benefits

searchers with no medical experience. Furthermore, we wanted to quantify potential differ-

ences between laypeople and experts in our experiments. We discuss the impact of query

clarification in Section 2.2.3.1; the differences between lay and expert users are highlighted

in Section 2.2.3.2.
13http://mturk.amazon.com/
14http://www.elance.com/
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2.2.3.1 Impact of Query Clarification

Quantifying the Language Gap

The first step in studying the effect of query clarification was to compare the success rate

of lay and experts users when no clarification is used. We found that laypeople answered

correctly to 63.2% of the questions, while experts were able to determine the correct answer in

73.3% of the cases (difference is statistically significant, Welch’s t-test, 2-tailed, p < 0.05).

This observation confirms a prominent gap between experts and lay users exists in our

experimental setup.

Do Lay Users Prefer Query Clarification?

To measure whether lay users preferred results retrieved through query clarification, we

used the implicit feedback given by users through team draft interleaving. This implicit

feedback allows us to use a voting scheme to determine which mapping is the preferred one,

as the feedback is akin to a vote on a ballot.

Team draft interleaving assumes that, for each query, the method preferred by a user is

the one that retrieved the majority of web pages they visited. Thus, we assigned a preference

to synonym mapping i when compared with mapping j if a user clicked more results retrieved

by a query clarified with mapping i than results retrieved by a query clarified with mapping

j.

The Kemeny-Young method [172] was used to determine the users’ preferred ranking

among the three synonyms lists and original query (“no clar.”), which we will refer to as

“candidates” throughout the rest of this section. The Kemeny-Young method was originally

designed to combine prioritized votes; in information retrieval, it has been used to perform

rank aggregation on search result sets [38, 31], on candidates in question answering tasks

[4], and on short texts in social media [139].
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The score for each ranking (which, in this context, is a permutation of the list {no clar.,

Behavioral, MedSyn, DBpedia}) is computed by summing the number of votes for each pair

of candidates in the ranking. The ranking with the highest score is the Kemeny ranking.

Formally, given a ranking r = {c1, . . . , cm}, its score S(r) is calculated as:

S(r) =
∑

i,j∈{1,...,m}
i<j

∑
u∈U


1 ranku(ci) > ranku(cj)

0 otherwise
(2.3)

Where u ∈ U is a user in our experiment, and ranku(cm) is the rank assigned by user

u to candidate cm. In other words, equation 2.3 computes the sum of the number of users

who ranked candidate ci over candidate ck for all possible candidate pairs ci, cj .

By definition, the Kemeny ranking maximizes the number of pairwise agreement between

users, where two users agree if they have expressed preference of a candidate over another

candidate. In other words, a ranking r = {c1, . . . , cm}, will score high if, for all i, j ∈

{1, . . . ,m}, i < j many users prefer candidate ci over candidate cj .

Table 2.6 shows the Kemeny rankings for the Mechanical Turk users with respect of the

set of all questions (left), the set of questions which were answered correctly (center), and

the set of questions which were answered incorrectly (right). When the set of all questions

is considered, results retrieved by queries clarified via MedSyn are preferred by Mechanical

Turk users, followed by web pages retrieved by unclarified queries. If only the set of correctly

answered questions is considered, two rankings achieve the same Kemeny score; in both cases,

results retrieved by clarified queries are preferred (Behavioral and MedSyn). When only the

set of incorrectly answered questions is considered, an identical ranking to the set of all

queries is observed. This symmetry, while perhaps counterintuitive, is due to the fact that

the results retrieved by the unclarified queries (“no clar.”) are preferred more highly in those

cases when a question is incorrectly answered; this preference skews the results when all

questions are considered, thus causing the symmetric behavior observable in Table 2.6.
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Table 2.6: The best synonym mappings as determined by the Kemeny-Young
method.

All questions

1st: MedSyn
2nd: no clar.
3rd: DBpedia
4th: Behavioral

Correctly answered
(tie between two rankings)

1st: Behavioral 1st: MedSyn
2nd: MedSyn 2nd: Behavioral
3rd: no clar. 3rd: no clar.
4th: DBpedia 4th: DBpedia

Incorrectly
answered

1st: MedSyn
2nd: no clar.
3rd: DBpedia
4th: Behavioral

“no clar.” represents the set of retrieved results by the original (unclarified) query. The left-
most column indicates that results retrieved by queries clarified with MedSyn were the pre-
ferred over all queries. However, when only considering those instances where questions were
correctly answered, Behavioral was the preferred mapping, shortly followed by MedSyn (cen-
tral columns). When only preferences associated with incorrectly answered queries (right-
most column), MedSyn is, once again, the preferred mapping.

Results retrieved by queries clarified through MedSyn are preferred more highly across

all questions, regardless of whether questions were answered correctly or not. Behavioral,

while being the preferred clarification mapping for correctly answered questions, ranks last

when the set of all questions is considered. We hypothesize that such behavior is due to

the skewness induced by the aforementioned preference expressed for unclarified queries. We

observe that Behavioral does not exhibit such skewness with respect of the set of correctly

answered questions; this could be caused by the fact that users seem to equally prefer queries

clarified by Behavioral and MedSyn.

Is Query Clarification Beneficial?

While the Kemeny-Young method provides great insights about the preference expressed

by participants towards results retrieved using clarified queries, its findings are insufficient to

properly determine whether query clarification increased the understanding of health topics

and which synonym mapping is the most appropriate for query clarification. In particular,
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Figure 2.3: Average fraction of correct answers for each clarification candidate.
For each candidate, the fraction is calculated over all the query/user combinations where the
candidate is preferred. Behavioral, the method with the highest fraction of correct answers,
improves over the baseline (no clarification, leftmost bar in blue) by 7.33% (statistically
significant, Welch’s t-test, p < 0.05).

the Kemeny ranking does not measure the difference between MedSyn and Behavioral, the

two most preferred mappings for the set of correctly answered questions (Table 2.6, center).

To quantify such difference, we calculate the average fraction of correct answers for each

clarification candidate when the query clarified by such candidate is preferred (Figure 2.3).

Of the three synonym mappings presented in this dissertation, Behavioral resulted in the

highest fraction of correct answers (0.678). In other words, when users express a preference

for results retrieved by a query clarified with Behavioral, they were able to correctly answer

the question associated with the query 68% of the time. This results represent an improve-

ment of 4.63% over MedSyn, an improvement of 5.38% over DBpedia, and an improvement

of 7.33% over no query clarification (statistically significant, Welch’s t-test, p < 0.05). This

suggests that Behavioral is to be considered the best-performing synonym mapping, since it

both achieves the highest Kemeny ranking for correctly answered questions and yields the

highest fraction of correct to incorrect question answers.
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Table 2.7: Correct/incorrect number of answers when users clicked HON-
certified websites.

Certified by HON Not Certified
Questions answered correctly 426 566

Questions answered incorrectly 158 270

These resources led to an 7.7% statistically significant increase (Fisher’s exact test, p < 0.05)
in correct answers.

The findings detailed in this subsubsection corroborate our observations regarding the

Kemeny ranking: MedSyn, while being the most preferred synonyms mapping across all

questions, is associated with a lower rate of correct answers, due to the strong preference

expressed for it for the set of incorrectly answered questions. On the other hand, Behavioral

achieves the highest fraction of correct answers; to the fact that it is one of the most preferred

clarification mappings in the set of correctly answered questions, and the least preferred for

the set of incorrectly answered questions.

Reliability of Results

The Health On the Net Foundation (HON)15 is an organization that publishes a code

of good conduct (“HONcode”) for health-related online resources, issuing a certification for

those websites that conform to it. The HONcode ensures that a website is reliable and useful

in the medical information it provides. On average, M=3.43 interleaved results were certified

by the HON foundation (SD=2.02, Mdn=3), while M=4.78 were not certified (SD=2.45,

Mdn=4).

We studied the impact of HON-certified results on the fraction of correct answers given by

Mechanical Turk workers. Table 2.7 shows the number of health-related questions answered
15http://www.healthonnet.org/
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correctly and incorrectly when Mechanical Turk users clicked on and did not click on web-

sites certified by HON. Users were 7.7% statistically more likely (significant at p < 0.05,

Fisher’s exact test) to answer the question correctly after visiting a website with HONcode

certification. Such increase remains statistically significant (p < 0.05) when the performance

of each user are normalized by the number of results visited. Therefore, we conclude that

HON certified websites help laypeople answer medical questions, lending credence to the

importance of such certification.

The majority (88%) of the clicks were on HON-certified websites returned by a clarified

query, which again confirms the effectiveness of our system in promoting pages whose content

was verified as reliable. Furthermore, the ratio of HON-certified vs. not certified websites

remains constant at any rank position (Spearman’s rank correlation coefficient rs = 0.921,

significant at p < 0.01), although the number of clicks exponentially decreased for lower

ranked results. This bias toward higher ranked results is to be expected, as shown by previous

research [70].

2.2.3.2 Users Analysis

As previously mentioned, the synonym mappings were tested on two groups of users:

laypeople, recruited via Amazon Mechanical Turk, and freelance medical professionals,

enrolled on Elance. Given the differences between the members of the two sets, we compare

the two groups. Descriptive statistics are reported in Table 2.8, while the distributions

of users are represented in Figure 2.4. All users answered questions better than would be

expected by chance (i.e., 25% of the time). Furthermore, the vast majority (> 95%) of users

answered questions correctly over 50% of the time.

As shown in Table 2.8, the expert group correctly answered a higher number of questions

(statistically significant, Welch’s t-test, p < 0.05). Moreover, Experts were found to visit

more web pages before answering to each question, which is consistent with the findings

reported in previous studies [153]. Users in both groups were found to click on more results
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Table 2.8: Overview of the differences between laypeople and experts.

Laypeople Experts
Number of survey participants 80 12

Fraction of correct answers
M=0.655, SD=0.135 M=0.723, SD=0.116

Sig. difference between groups, p < 0.05

Average clicks per correct answer
M=1.94, SD=0.84 M=3.19, SD=1.42

Sig. difference between groups, p < 0.05

Average clicks per wrong answer
M=1.60, SD=0.93 M=2.86, SD=1.23

Sig. difference between groups, p < 0.01

Intra-agreement within groups
0.4477 0.6528(Fleiss’ kappa)

The significance of differences between the two groups were measured using Welch’s t-test
(2-tailed).

before correctly answering a question, although the difference was not found to be significant

(Welch’s t-test, p = 0.687 for laypeople, p = 0.556 for experts).

We quantified the inter-agreement between the two sets of participants using Fleiss’

kappa (Table 2.8). Experts were found to have a substantially higher agreement than

laypeople. This observation, alongside the higher success rate, confirms the intuition that

experts are more likely to correctly answer the proposed questions. This could be due to

the fact that health professionals, thanks to their background, are able to successfully infer

the necessary information from the retrieved results to satisfy their information need. We

hypothesize that laypeople are instead more likely to randomly guess when they are pre-

sented with a difficult question, thus exhibiting both lower agreement and lower success

rate.

For the laypeople group, we observed a moderate positive correlation between the average

number of web pages visited and the fraction of correct answers (Spearman’s correlation,

rs = 0.228, p < 0.05). In other words, those users who visited more web pages were more

likely to correctly select the correct answer. For the expert group, we noticed a strong but
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Figure 2.4: Distributions of the fraction of correct answers by laypeople (orange,
N=80 M=0.655, SD=0.135) and experts (blue, N=12, M=0.723, SD=0.116).

not significant negative correlation between the average number of web pages visited and the

fraction of correct answers (Spearman’s correlation, rs = −0.558, p = 0.083). This finding,

while not conclusive, may suggest that more skilled experts—who have a higher success

rate—may need to visit less web pages to correctly answer a question.

For both groups, a very strong correlation was found between the number of results

clicked by a user before correctly answering a question and the number of results clicked

before incorrectly answering a question (Spearman’s correlation, rs = 0.780 for experts,

rs = 0.882 for experts, p < 0.01 for both groups). This suggest that the number of visited

results is unique to each user, and it is not influenced by the perceived difficulty of each

question.

A fixed compensation was given to experts throughout the experiment; on the other end,

the reward per task for laypeople increased over time to speed up data collection. To verify

that higher compensation rates did not skew the performances of workers, we tested whether

any relationship existed between retribution and fraction of questions correctly answered.

However, no correlation was found between the two variables (Spearman’s correlation, rs =

0.110, p = 0.405).
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Table 2.9: Percentage of queries where the baseline (“no clar.”) is outperformed
by each synonym mapping.

Synonym mapping Percentage of queries in which
baseline (“no clar.”) is outperformed

Behavioral 66% (33 queries)
MedSyn 62% (31 queries)
DBpedia 50% (25 queries)

any synonym mapping 86% (43 queries)

Queries clarified using Behavioral—the best mapping—outperformed the unclarified query
in 66% of the cases. The last row of the table contains the percentage of queries where any
of the synonym mappings outperforms the baseline.

Finally, we note that unlike laypeople, experts seem to prefer the unclarified queries over

the clarified ones. Nevertheless, the difference in success rate between the two is not signifi-

cant (Welch’s t-test, p = 0.409). We hypothesize that such findings could be explained by the

fact that experts are more likely to effectively determine those documents that could satisfy

their information need from the text snippet, thus not benefiting from query clarification.

Such hypothesis would be consistent with previous studies investigating the relationship

between domain knowledge and search results click-through events [28].

2.2.4 Learning to Select the Optimal Synonym Mapping

As shown in Section 2.2.3.1, query clarification increases the fraction of correctly answered

questions. However, while all the mappings showed an overall improvement over the baseline,

no single clarification technique consistently outperformed all others; moreover, for some

queries, the unclarified query led to a higher success rate than any of the clarified queries.

These observations are supported by the findings reported in Table 2.9. Behavioral, the

best performing synonym mapping, improves over the baseline in 66% of the cases, while

MedSyn and DBpedia outperform the baseline only in 62% and 50% of the cases, respectively.
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Table 2.10: Features used as predictor variables for each logistic regression model
Mk.

Features over query qi and clarification candidate Ck

Probability of bigrams and trigrams in qi of appearing in Wikipedia
Probability of unigrams (stopwords excluded) in qi of appearing in Wikipedia
Probability of bigrams and trigrams in qi of appearing
in health-related Wikipedia pages
Probability of unigrams (stopwords excluded) in qi of appearing
in health-related Wikipedia pages
Normalized longest common subsequence between clarified query Ck(qi) and qi
Presence of clarified query Ck(qi) in any other
clarification candidate Ch, h 6= k for query qi

Features over query each web page p retrieved by clarified query Ck(qi)

Domain name of p (e.g., nlm.nih.gov)
Normalized longest common subsequence between
page title of p and Ck(qi)
Normalized longest common subsequence between
search result snippet of p and Ck(qi)
p is certified by HON

Finally, when considering any synonym mapping, we notice that, for 86% of the queries

in the dataset, the baseline is outperformed; this implies that, for the remaining 14% of

queries in our dataset, results retrieved by the unclarified query yield the highest rate of

correctly answered questions. Motivated by these findings, we investigated whether the most

appropriate mapping can be predicted to further increase the benefits of query clarification.

Previous work on query performance prediction [170, 19] has demonstrated that selec-

tive query expansion through a predictor achieves significant performance gains compared

to either always expanding or always not expanding queries. In this section, we introduce

a classifier that, given a query, either predicts which synonym mapping among Behavioral,

MedSyn, and DBpedia should be used to clarify the query, or predicts to perform no clari-

fication. For the reminder of this section, we will refer to the four possible outcome of the

classifier as “clarification candidates”.

34

nlm.nih.gov


 

Fr
ac

ti
on

 o
f c

or
re

ct
 a

ns
w

er
s

0.6

0.65

0.7

0.75

no clar. Behavioral MedSyn DBpedia HON Logistic 
regression

0.632

0.678 
(+7.33%)

0.647 
(+2.37%) 0.642 

(+1.58%)

0.713 
(+12.81%)

0.649 
(+2.69%)

1

10

100

1 2 3 4 5 6 7 8 9 10

correct hon incorrect hon correct not hon incorrect not hon

r = 0.827

Figure 2.5: Average fraction of correct answers by laypeople. Six approaches
are compared: unclarified query (no clar.), three synonym mappings (Behavioral, MedSyn,
DBpedia), a baseline classifier trained on the number of HON-certified pages retrieved (HON)
and the proposed classifier (Logistic regression). Logistic regression outperforms the baseline
by 12.81% (statistically significant, Welch’s t-test, p < 0.05).

The classifier was implemented as ensemble of four classifiers, one for each clarification

candidate. In detail, four binary logistic regression models M = {M1, . . . ,M4} were trained

as one-vs-the-rest classifiers: given a query qi and its best clarification candidate Ck, we

trained model Mk with class label 1, and models Mh ∈M, h 6= k with class label 0.

Two sets of features were used to train each model. The first one was defined over each

query and each clarification candidate; it includes estimations of the likelihood of unigrams,

bigrams, and trigrams in the query of appearing in any Wikipedia page, as well as their

likelihood of appearing in health-related Wikipedia pages (as defined in Section 2.2.1.2).

The longest common subsequence (LCS) between the clarified and unclarified (normalized

by the length of the unclarified query) was also considered, as well as an indicator of the

presence of the clarified query in any other clarification candidate. The second set of features

was defined over each web page retrieved by a query qi processed by a clarification candidate

Ck; in particular, we considered the domain name, LCS between the clarified query and the
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page title, LCS between the clarified query and the search snipped of the page, and the

presence of the page in the Health on Net database as predictor variables. The detailed list

of features is presented in Table 2.10.

To determine the optimal clarification mapping for a query qi, we used each model Mk

to calculate an estimation pi,k of the likelihood of clarification candidate Ck of being the

optimal mapping for qi. For each qi, the system chose as clarification mapping the one with

the highest likelihood, i.e., argmaxk(pi,k).

The system was implemented using the Scikit-learn Python package [107] and tested

under ten-fold cross validation. The results are presented in Figure 2.5. We compared the

performance of the logistic regression classifier with the results obtained by each individual

synonym mapping. We also considered a simple multinomial logistic regression classifier

trained on the fraction of retrieved results that are certified by HON as an additional baseline.

The logistic regression classifier performs well, improving over every individual synonym

mapping. In detail, it achieves a 12.81% increase over the unclarified query, an 11.06%

increase over DBpedia (Welch’s t-test, p < 0.05), a 10.20% increase over MedSyn (p < 0.05)

and a 5.16% increase over Behavioral (p < 0.1). Furthermore, it also outperforms (9.86%

improvement, p < 0.05) the simple classifier trained on the number of HON-certified pages

retrieved.

The positive results presented in this section confirm that query clarification can be

further improved by selecting the most appropriate clarification candidate for each query.

2.3 Search Results Semantic Reranking

In this section, I propose and validate a novel set of syntactic and semantic features to

be used in a learning to rank (LtR) framework that is aimed at capturing the semantic

similarity between the information need expressed by a query and the content of relevant

documents (Section 2.2.1). Then, in Section 2.3.2, the dataset used to evaluate the system

is introduced. Finally, results are presented in Section 2.3.3.
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Table 2.11: Features for each document.

Features
group

Description Note

stat

Term frequency (tf ) of query terms in document †
Inverse document frequency (idf ) of query terms in document †
tf-idf score of query terms in the document †
Length of the body of the document
Length of document URL
Number of slashes in document URL
tf of terms in the document †
idf of terms in the document †
tf-idf of terms in the document †
idf of domain name †
Vector space model, BM25, language model with Dirichlet smoothing, language model with
Jelinek-Mrcer smoothing scores
Spam scores

st-health
Document has Health-on-Net certification
tf of terms in the document that appear in health pages on Wikipedia †
idf of terms in the document that appear in health pages on Wikipedia †

umls

Number of n-grams in the document matched to one or more UMLS concepts *
Number of UMLS concepts matched to one or more n-grams in the document *
Number of UMLS concepts matched to the query and the document *
Fraction of UMLS concepts matched for each semantic type
idf of UMLS concepts in health pages on Wikipedia †

lsa
Euclidean distance between LSA representations of the query and the document
Euclidean distance between LSA representations of the query and the document, weighted by
the odds of each term of appearing in health Wikipedia

w2v
Euclidean distance between words embedding of the query and the document. ‡
Euclidean distance between word embeddings of the query and the document, weighted by the
odds of each term of appearing in health Wikipedia.

‡

For features marked with *, we use both the raw sum and the sum normalized by the
document length as features. A † indicates a feature group where the sum, mean, variance,
and median of the values were used as features. For features marked with ‡, we used word
embeddings trained on PubMed [24] and Google News [91] to derive document and query
representations.

2.3.1 Methodology

2.3.1.1 Features

We proposed in [128] a combination of statistical and semantic features to train a LtR model.

The feature set can be partitioned in five groups: An overview of all the features introduced
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in this section is presented in Table 2.11. We remand the reader to Section 2.3.3.2 for an

analysis of the impact of each set of features.

Statistical Features (stat)

We considered a subset of features from the LETOR benchmark dataset, which have

shown to be useful in many LtR systems [81]. These features encode statistical information

about the terms in the query and documents (e.g., term frequency (tf ), inverse document

frequency (idf )). We excluded some features because they are not available for our dataset

(e.g., HITS scores). We also excluded all features that relied on the titles of webpages, as

they showed poor correlation with relevance judgments in our tests. In total, 36 features

were extracted.

Statistical Health Features (st-health)

We expanded the set of statistical features by including health-specific features. We con-

sider whether a document is certified by the Health on Net Foundation16, an organization

that publishes a code of good conduct for health websites. Such signal has been shown to be

a good indicator of informative web sites [130]. We also extracted tf and idf of all terms in

the document that can be found in the subset of health-related pages in Wikipedia, which

were extracted following as in [130]. The average, variance, mode, and sum of tf and idf

were used as features. In total, 9 features belong to this group.

Unified Medical Language System Features (umls)

The Unified Medical Language System17 (umls) is a medical ontology maintained by the

U.S. National Library of Medicine. Terms in this ontology are organized by concepts, each

of which is associated with one or more semantic type. Palotti, et al. [102] observed that

more than 77% medical queries issued by laypeople contain medical concepts from umls.

Therefore, we explored the use of medical concepts as semantic features to identify relevant
16https://www.healthonnet.org/
17https://www.nlm.nih.gov/research/umls/
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search results. umls concepts are often present in queries issued by laypeople; thus, we

explored their used as to identify relevant search results. To obtain the set of umls concepts

in each document and in the query we used QuickUMLS a medical concept extraction system

that we proposed in [126]. We match umls expressions belonging to 16 semantic types that

are associated with symptoms, diagnostic tests, diagnoses, or treatments, as we previously

suggested [126]. 26 umls features were extracted from each document and query.

Latent Semantic Analysis Features (lsa)

To extract semantic relationships between terms, we built a 100-dimension Latent

Semantic Analysis (LSA) model using a collection of 9,379 entries from the A.D.A.M.

Medical Encyclopedia18 (a consumer-oriented medical encyclopedia) and the MedScape19

reference guide. The model was used to obtain vector representations of terms in the query

and documents, which were summed using two strategies: simple sum and sum weighted by

the probability of each term appearing in the health section of Wikipedia. This composition

technique, while simple, has been shown to be very effective [14]. To extract lsa features,

we computed the euclidean distance between the vector representing the query and the

vector for the document. We used the similarity scores from the weighted and unweighted

models as features. We obtained two features using this approach.

Word Embeddings Features (w2v)

Similar to [26], we used word embeddings trained on PubMed20 and Google News21 to

obtain dense vector representations for terms in the document and in the query. Word

embeddings from the medical domain provide a strong representation for medical terms,

while general domain word embeddings should capture the terms lay people are be more

familiar with. Unlike the lsa model, which was trained on documents describing diseases,

treatments, and tests, the PubMed model has a broader scope; thus, we used both to generate
18https://medlineplus.gov/encyclopedia.html
19http://reference.medscape.com/
20https://github.com/cambridgeltl/BioNLP-2016/
21https://code.google.com/archive/p/word2vec/
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features. As in lsa, we used a sum and a weighted sum to compose the term vectors into the

vector representation of the document or query. In total, 4 features were extracted: weighted

and unweighted similarities between document and query using PubMed and Google News

models.

2.3.1.2 Ranking Algorithms

LtR algorithms are typically partitioned in three groups: point-wise, pair-wise, and list-wise

learners. point-wise algorithms are trained to predict the relevance of each example in the

collection; pair-wise learners are trained to predict, for any two documents, which one should

be ranked before the other. Finally, list-wise algorithms attempt at finding a permutation of

the retrieved results such that the value of a loss function on the list of results is minimized.

Because the features described in Section 2.3.1.1 do not preclude algorithms from any of the

three groups to be used, we experimented with a set of algorithms that is representative of

all three.

We considered the following LtR algorithms: logistic regression, random forests, Lamb-

daMART [155], AdaRank [156], and ListNet [18]. Logistic regression and random forests

are point-wise algorithms; we trained them to predict, for each document, its likelihood

of being relevant. LambdaMART, a pair-wise learner, is an ensemble method that aims at

minimizing the number of inversions in ranking. ListNet and AdaRank are list-wise learners

that are designed to find a permutation of the retrieved results such that the value of a loss

function on the list of results is minimized. Point-wise learners were implemented using the

scikit-learn library22 v.0.18; We used the implementation of LambdaMART, AdaRank, and

ListNet available in RankLib23 v.2.7 for the experiments described below.
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Table 2.12: Six queries from the 2016 CLEF eHealth IR Task dataset from two
distict topics.

Query ID Topic ID Query Text
. . .

101004 1 inguinal hernia surgery or surgical complications
101005 1 inguinal hernia laparoscopic with mesh surgery reviews
101006 1 inguinal hernia surgery story, is it safe?

. . .

103004 3 headaches caused by too much blood or high blood pressure
103005 3 headache that only goes away with blood loss
103006 3 strong headaches at base of skull, stops with blood donation

. . .

Compared to the queries described in Section 2.2.2.1, these queries encode a much narrower
information need.

2.3.2 Experimental Setup

2.3.2.1 Dataset

The proposed LtR approach to laypeople medical search was evaluated on the 2016 CLEF

eHealth IR Task dataset [182]. The dataset consists of 300 queries modeled after 50 dis-

tinct topics. A sample of queries is shown in Table 2.12. The topics were created by health

professional from forum posts from the AskDocs section of Reddit; well written posts con-

taining demographic information and medical history of the authors and expressing a single

information need were selected to generate plausible queries; 6 queries were created for each

forum post. Results for the queries were retrieved from the ClueWeb12 category B dataset,

a collection of 53 million web pages. In total, 25,000 documents were evaluated; to each

one, a score between 0 and 2 was assigned. Because all queries created from the same forum

post share the same information need, relevance judgments of queries on the same topic are
22http://scikit-learn.org/stable/
23https://sourceforge.net/p/lemur/wiki/RankLib/
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identical. On average, 74.1 documents were deemed relevant for each query (min: 1; max:

335; median: 45; std.dev.: 74.7).

2.3.2.2 Experiments

Documents were indexed using the Terrier search engine, v. 4.024. As a baseline, we consider

the BM25 scoring function defined by the CLEF eHealth organizers in [182]. While simple,

this baseline outperformed all 10 teams (29 runs) who participated in shared task25. We

use this baseline to retrieve up to 1,000 documents per query to train the LtR methods. All

learners were trained under five fold cross validation and manually tuned using a separate

validation set. Pair-wise and list-wise learners were configured to optimize NDCG@10 on

the validation set. To avoid overfitting, we carefully generated the training, validation, and

test set so that all queries from the same group are part of the same split. Finally, P@10

and NDCG@10 were used to evaluate all the approaches, as users of online search engines

are more likely to pay attention to the first page of retrieved results than the subsequent

ones.

2.3.3 Results

In this section, we analyze the impact of different classification algorithms and features

set on the outcome of the LtR task. Specifically, we compare the performance of different

point-wise, pair-wise, and list-wise algorithms in Section 2.3.3.1; then, we study the impact

of each class of features in Section 2.3.3.2; finally, we present a per-query analysis of the

performance of the best algorithm in Section 2.3.3.3.

2.3.3.1 LtR Algorithms

We compare the LtR approaches from Section 2.3.1.2 with the baseline used in [182]. For

all experiments, learners are trained on all the features described in Section 2.3.1.1.
24http://terrier.org/
25https://goo.gl/6kpCFJ
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Table 2.13: Performance of LtR algorithms on the dataset.

Method Type of approach NDCG@10 P@10
BM25 baseline [182] n/a 0.241 0.291
Random Forests point-wise 0.249 (+3.3%) 0.293 (+0.6%)

Logistic Regression point-wise 0.262* (+8.7%) 0.317 (+8.9%)

LambdaMART [155] pair-wise 0.305* (+26.6%) 0.361* (+24.1%)

AdaRank [156] list-wise 0.239 (-0.8%) 0.292 (- 0.7%)

ListNet [18] list-wise 0.267* (+10.8%) 0.333* (+ 14.4%)

Runs marked with * are significantly different from the baseline (Paired Student’s t-test,
Bonferroni-adjusted, p < 0.01).

Of all learners reported in Table 2.13, LambdaMART achieves the best performance

(+26.6% NDCG@10, +24.1% P@10 over the baseline). This demonstrates that LtR can

be successfully exploited to improve the access to relevant medical resources that satisfy

the need of online health seekers. As expected, LambdaMART outperforms point-wise LtR

approaches, as it is often the case [81]. LambdaMART also achieves better performance than

the two list-wise methods, AdaRank and ListNet (difference is statistically significant for

both). This is to be expected, as previous work found LambdaMART to be very competitive

in LtR tasks on web results when optimizing for NDCG@10 [141].

2.3.3.2 Feature Analysis

The performance of the model trained on each set of features is presented in Table 2.14.

We observe that the model trained only on the statistical features (stat) obtains better

performances than models trained on other sets of features. This is to be expected, as

statistical features were modeled after the LETOR feature set, which has been shown to

be very effective for LtR tasks [81]. The model trained solely on statistical health features

(st-health) ranks second, suggesting that the presence and frequency of health terms plays

an important role in identifying relevant results. This intuition is reinforced by the findings
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Table 2.14: Performance of LambdaMART trained on each set of features.

Features group NDCG@10 P@10
BM25 baseline 0.241 0.291

stat 0.274* 0.322*
st-health 0.260 0.311

umls 0.253 0.307
w2v 0.160* 0.210*
lsa 0.121* 0.188*

All features 0.305 0.361
Runs marked with * are significantly different from the baseline (Paired Student’s t-test,
Bonferroni-adjusted, p < 0.0083).

shown in Table 2.15, where st-health features are among the highest ranked in terms of

importance.

The umls features set shows limited improvements over the BM25 baseline. However,

based on their ranking in Table 2.15, we argue that they have an important role in model

built using all features, as they capture information about symptoms and diseases mentioned

in the queries.

Lastly, we note that neither word embedding similarity features (w2v) nor latent

semantic analysis similarity features (lsa) features are enough to train an effective LtR

model by themselves. This outcome could be due to the fact that these features sets, which

contain just 4 and 2 features, do not encode enough information to train a comprehensive

model. However, while w2v features improve the effectiveness of the model when combined

with other features (Table 2.15), lsa features have less of an impact on the model built

by LambdaMART. This might be due to the fact that the LSA model was trained using

a set of 9,379 pages, which could be too small to properly capture the semantic similarity

between the query and the retrieved documents. This might be due to the fact that the set

of 9,379 pages the LSA model was trained on is too small to capture the semantic similarity
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Table 2.15: Top 10 features ranked by weight.

Feature Group Weight
Avg. idf in health Wikipedia st-health 0.0995
# of matching UMLS concepts in document umls 0.0776
Avg. tf in health Wikipedia st-health 0.0616
BM25 similarity score stat 0.0605
# concepts in “Sign or Symptom” UMLS semantic type umls 0.0579
Similarity weighted word embeddings PubMed w2v 0.0521
# concepts in “Injury or Poisoning” UMLS semantic type umls 0.0418
LM similarity score stat 0.0408
Similarity weighted word embeddings Google News w2v 0.0393
Spam scores stat 0.0335

The weight of each feature was computed by averaging their information gain and `2-
normalized.

between queries and the retrieved documents. Conversely, similarity features derived by

dense word representations are effective for this task as long as the model used to derive

them is accurate.

2.3.3.3 Query Performance

In this section, we compare the per-query performance of the baseline with the best ranker

from Table 2.13. Results are shown in Figure 2.6. Rather than reporting the individual

NDCG@10 for each query, we average the results of all queries that belong to the same

query group. This approach is motivated by the fact that all queries in the same group share

the same information need (and document relevance judgments). Therefore, by averaging

the performance of all queries in the same group, we can study whether the performance

of the best ranker relative to the baseline is due to the information need associated with

each query. To convince the reader that this representation is justified, the variance for each
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Figure 2.6: NDCG@10 of the baseline and LambdaMART. To increase the clarity
of the figure, we averaged the value of NDCG@10 of all queries from the same query group
(i.e., all queries sharing the same information need.)

query group is shown in Figure 2.6. As the variance for each topic is moderate, we conclude

that our approach is appropriate.

The proposed ranker outperforms the baseline on 36 out of 50 topics. Interestingly, Lamb-

daMART outperforms the baseline in all but one query whose NDCG@10 is below median.

In other words, there exists a statistically significant correlation between the performance

of the baseline on each query and the difference between the NDCG@10 of the baseline and

LambdaMART (Spearman’s rank correlation, rs = −0.38, p < 0.05). This suggests that

LtR is a viable strategy for addressing difficult queries; however, its performance are still

bounded by the quality of results retrieved by the baseline.

2.4 Conclusions

Seeking information on medical topics is a common task for search engine users. Arguably,

this information need also has one of the most important and immediate effects on the well-

being of users. However, the technical nature of this information makes it inaccessible to

many users, partly because of the jargon used by medical professionals. A significant effort

has been made by providers of information in the medical domain to make their content
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accessible to laypeople; yet, many users still struggle to retrieve reliable literature to their

needs, due to a language gap.

This gap was quantified by measuring the ability of lay and experts users to complete a

task-based retrieval task in which they were asked to answer health-related questions using

search engine results. The evidence presented in this chapter suggests that the difference

between the two group is significant. Yet, experiments showed that by clarifying queries

submitted by non-experts to a major Internet search engine the likelihood that a user will

answer health-related questions correctly increases significantly. Thus, our approach bridges

the language gap between medical professionals and laypeople.

Three existing synonym mappings were used for query clarification; results show that all

three are effective resources for such task. Of the three, queries clarified using Behavioral

achieve the highest fraction of correctly answered questions (67.8% correctly answered ques-

tions, +7.3% over baseline);MedSyn, while being preferred by laypeople over no clarification,

does not yield a significant improvement over the baseline (+2.3% over the baseline), partly

due to the fact that it is strongly preferred in the case of incorrectly answered questions.

Furthermore, I presented a supervised classifier that is able to select the most appropriate

synonym mapping for query clarification. This classifier outperformed every individual syn-

onym mapping, further validating the effectiveness of query clarification (71.3% correctly

answered questions, +12.8% over baseline).

Finally, a learning to rank approach was proposed as another mean to close the language

gap consumers suffer from. This approach uses a novel set of syntactic and semantic features

to match the information need expressed by lay queries with the content of each document.

The proposed approach led to a 26.2% increase in NDCG@10 over existing methods. The

impact of several Learning to Rank algorithms was studied; furthermore, we discussed the

effectiveness of our proposed features. This work demonstrates that semantic features can

be effectively exploited by a LtR framework to improve laypeople health search.
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Chapter 3

Medical Literature Retrieval for Health Experts

In Chapter 1, I briefly discussed how health professional struggle to search for medical

literature while practicing. As many have argued, computational solutions are needed to

handle the increase in volume of medical literature and adoption of electronic health records

in the last few years. In particular, there is a growing interest in clinical decision support

(CDS) systems that “provides timely information, usually at the point of care, to help inform

decisions about a patient’s care.” [54]

In this chapter, I will explore a specific type of CDS system designed to retrieve medical

literature in support of clinical practice. In detail, I will be focusing on the problem of using

medical case reports, such as the one shown in Figure 3.1, to obtain high-quality publications

to be used by health experts to diagnose or treat a patient; I will be referring to this task

as “CDS search”.

As highlighted in Chapter 1, CDS search is an example of a complex search task in

support of clinical practice: (i) there is a growing need for systems that could facilitate

evidence-based medicine [29, 49]; (ii) healthcare professionals — especially those who prac-

tice — struggle to keep up-to-date with current advances in clinical research [15, 142],

which, in turn, makes clinical errors more likely [32, 47]; (iii) search systems commonly used

to retrieve medical literature are designed to handle short, keyword-heavy queries, thus

achieving poor performance when clinical notes are used as queries [118].

Compared to other search settings, CDS search also presents unique challenges: (i) clin-

ical case reports are substantially longer than queries in traditional search domains; (ii)

unlike other search applications characterized by long queries (e.g., systematic review or

48



patent search), case reports often consist of multiple sentences and contain narrative ele-

ments, such as temporal dependencies between sentences and cause and effect relations.

(iii) most importantly, CDS search highly favors precision over recall, since many health-

care professionals stated that they can only afford to spend limited time reading medical

literature.

Biomedical literature retrieval has previously been studied in the TREC genomics track

[60]. CDS search, while sharing some aspects with it — descriptive queries, domain specific

lexicon — is not limited to the genomics domain, but spans across multiple fields in medicine.

Consequently, CDS search systems must process a variety of literature styles written with a

wide domain specific vocabulary. Therefore, it is necessary to re-evaluate the effect of known

IR techniques for this domain.

In [128, 131, 132], I studied the impact of query expansion and reduction methods that

take advantage of medical domain knowledge, as well as general purpose IR techniques.

In particular, two novel methods for CDS search are introduced in Section 3.2. Both sys-

tems reformulate long, discursive queries by adding relevant terms to the information need

expressed in the query. The first method expands the query by using pseudo relevance feed-

back; then it prunes the list of expansion candidates by removing those that are not medically

related. The second method is a supervised approach to query expansion; it uses a multi-

layer neural network to predict, given a list of possible candidate terms, which terms to add

to the original query to improve document retrieval. The two methods were tested on two

datasets designed to evaluate CDS search (USMLE dataset [132], TREC CDS dataset [116,

118]), where they achieved comparable or better performance than state of the art systems,

especially in precision-oriented metrics. This confirms that expanding medical queries with

latent health concepts represents a viable strategy to improve medical literature retrieval

systems.

Finally, I conclude this chapter by presenting a technique to reduce noise in clinical

queries. Because the implementation of electronic health records varies from institution to
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A 46-year-old woman presents with a 9 month history of weight loss (20 lb),
sweating, insomnia and diarrhea. She reports to have been eating more than
normal and that her heart sometimes races for no reason. On physical examina-
tion her hands are warm and sweaty, her pulse is irregular at 110bpm and there
is hyperreflexia and mild exophthalmia.

Figure 3.1: An example of a query in the TREC dataset. (Query #6, TREC 2015)

institution, there is no consisted format in which clinical notes are written [66]. This results

in clinical notes of varying quality, with little to no accompanying structured information

[120]. As an example, many collections that have been released by institutions for research

purposes make heavy use of abbreviation, are heavily comprised of partial sentences (e.g.,

missing subject or verb), and include unnecessary information about patients’ medical his-

tory and stay [71, 121, 145, 146, 147]. This poses a challenge for CDS search system, as

this noise hinders performance of systems that are designed and tuned for properly written

clinical notes (such as the ones trained on TREC CDS 2014 and 2015 datasets.) Therefore,

in Section 3.5, I introduce a system designed to reformulate noisy clinical notes; when eval-

uated on the 2016 TREC dataset [117], the proposed method achieves an improvement of

67% over the unmodified clinical note, and a 14% improvement over state of the art query

reformulation methods.

3.1 Related Works

Search in the health domain has been a topic of interest for more than two decades. Over

the years, many systems that rely on query reformulation have been proposed to improve

retrieval in this domain. In this section, we present an overview of query reformulation tech-

niques to expand and reduce queries using statistical techniques or domain-specific resources.
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3.1.1 Domain-specific Query Expansion

Domain specific resources have long been used to perform query reformulation; in particular,

they are commonly used to expand the query, in an effort to mitigate issues of polysemy

and synonymity of medical expressions.

Early on, Srinivasan [135] introduced SMART, a retrieval system that uses the MeSH

ontology1—a controlled vocabulary used by the US National Library of Medicine to tag

and index articles in PubMed—to expand queries in the OHSUMED collection. Similarly,

Hersh, Price, and Donohoe [59] expanded queries with terms manually selected from the

UMLS, although experimental results showed that thesaurus based query expansion did

not always improve search efficiency. More recently, Liu and Chu [82] also used UMLS to

perform query expansion; their system automatically expands the query using scenario-

specific terms (where a scenario could be “make a diagnosis” or “finding a treatment”) and

chooses the most appropriate UMLS terms for any given scenario. Dong, Srimani, and Wang

[35] adapted PageRank to perform query expansion using the UMLS ontology. Specifically,

terms in UMLS are used as nodes for the PageRank; relationships between concepts are used

to determine popularity.

Query expansion through domain-specific resources has been found to be particularly

effective for long queries. In the context of the TREC Genomics track, Hersh and Voorhees

[60] noted that, the groups who used domain-specific query expansion (e.g., synonym based

expansion) achieved the best performance (e.g., [16]).

For CDS search, Mourao, Martins, and Magalhaes [94] used MeSH terms to expand the

query; the modified query was then used to retrieve and rank documents using multiple

scoring functions (BM25L, BM25+ [85], tf-idf, language model with Dirichlet smoothing

[175]). Finally, the rank of retrieved documents was determined by combining the ranks

given by each scoring function using the Reciprocal Rank Fusion algorithm [30].

1https://www.ncbi.nlm.nih.gov/mesh
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3.1.2 Statistical Query Expansion

Several statistical approaches to query reformulation for health search have been studied;

overall, such approaches seems to be more effective in case of shorter queries, such as those

in the OHSUMED collection. For example, Abdou and Savoy [2] introduced a variant of the

Rocchio query expansion formula [119] for search in MEDLINE; their system improved up

to 13.5% over SMART.

Many explored the use of statistical query expansion through pseudo relevance feedback

for CDS. Choi and Choi [25] used titles, abstracts, and MeSH terms from the MEDLINE

collection to obtain expansion terms for each query. Documents retrieved by the expanded

query were then re-ranked using three classifiers trained to identify papers that matched

the scenario. Xu, McNamee, and Oard [157] and McNamee [87] combined HAIRCUT [88], a

character n-grams search engine, with pseudo relevance feedback. Their system achieved an

increase in inferred Normalized Discounted Cumulative Gain (infNDCG) [164] when PRF

is used over their non-expanded baseline.

Interestingly, some researchers have experimented with combining statistical evidence

from multiple collections to select terms to expand a query. For example, Zhu et al. [179]

explored the use of four auxiliary collections of clinical records, medical literature, and

general domain web pages to build a mixture of relevance model for query expansion for

improving clinical cases retrieval. Similarly, Oh and Jung [99] proposed a method that

employs external collections to generate candidate terms to add to the queries. Documents

retrieved from external collections are clustered; terms from each cluster are then employed

to expand the query. The proposed method was tested on three collections: TREC CDS,

OHSUMED, and CLEF eHealth; however, it achieved statistically significant improvement

over a language model baseline in the first two cases (+10.32% and +12.33% respectively).
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3.1.3 Hybrid Approaches

Approaches that combine statistical techniques with domain specific resources have also

been proposed. Jalali and Borujerdi [65] proposed a method that incorporates medical con-

cepts in the PRF process. In detail, MeSH terms are used in conjunction with query terms

to rank MEDLINE documents. In the context of TREC Genomics, Stokes et al. [138] noted

that “query expansion has a positive effect on genomic retrieval performance . . . [but] expan-

sion terms should be gleaned for manually-derived domain specific resources.” Similarly,

Lu, Kim, and Wilbur [83] and Matos et al. [86] proposed concepts-based query expansions

systems. Limsopatham, Macdonald, and Ounis [80] uses a combination of medical concepts

extracted from the top retrieved documents and concept relationship obtained from ontolo-

gies and external collections to expand the query. Balaneshin Kordan, Kotov, and Xisto [7]

(and subsequent work [8]) used Markov Random Field Parameterized Query Expansion, a

mixture model that weights terms based on whether they appeared in the query, in top

retrieved documents, or in the UMLS ontology. Goodwin and Harabagiu [48] reformulated

the problem of retrieving medical literature as a question answering problem; their system

extracts questions from clinical notes, and retrieves answers using a probabilistic knowledge

graph generated from a collection of electronic medical records.

3.1.4 Query Reduction

Query reduction algorithms have been extensively studied as a way to remove noisy terms

from the original query. Their impact has mostly been tested in the web search domain.

For example, Kumaran and Carvalho [78] used SVMrank Joachims [69] to find the best

sub-query using a series of clarity predictors and similarity measures as features. Balasubra-

manian, Kumaran, and Carvalho [9] also studied how to improve performance by reducing

queries using quality predictors; however, their system only removes up to one term from

the query. This approach is not viable when dealing with long, descriptive case reports.

Bendersky and Croft [11] used a supervised method for identifying key concepts in long
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queries; in a subsequent work, they assigned different weights to concepts extracted from

the query [13]. The framework introduced in the latter work inspired the system introduced

by Balaneshin Kordan, Kotov, and Xisto [7] for CDS search. Luo et al. [84] has also adapted

query reduction techniques in their MedSearch engine. The engine performs query reduction

by filtering non-important terms based on their tf-idf score. Their system is designed for

lay people performing health search on the Web and does not focus on medical literature

retrieval. However, as shown by Balaneshin-kordan and Kotov [8] and Soldaini, Yates, and

Goharian [127], existing query reduction algorithms are typically outperformed by ad-hoc

methods for CDS search.

3.2 Methodology

As documented in the previous section, researchers have shown that query reformulation

techniques are very effective at improving retrieval performance of CDS search systems.

Informed by such findings, we propose a three-stage approach to reformulate long, dis-

cursive queries. The first stage takes advantage of the PRF method introduced in [132] to

generate term candidates (Section 3.2.1.) In the second stage, a subset of candidate terms

are selected for query expansion. Two candidate selection methods are compared: the first is

an improved version of health terms pseudo relevance feedback (HTPRF ) [132]; the second

is a supervised approach (Sections 3.2.2 and 3.2.3.) Finally, in the third stage, the query is

expanded using the terms selected in the previous step; furthermore, we also experimented

with statistical and syntactical query reduction methods to remove terms from the query

that could cause query drift (Section 3.2.4.)

3.2.1 Candidates Generation

Candidate terms for query expansion are generated using the pseudo relevance feedback

method introduced in [132]. For each query, the algorithm assigns a score sj to each term tj

appearing in the k highest ranked documents.
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In detail, the method works as follows: given a query Q and a document collection D, it

firstly retrieves and tokenizes k documents {d1, . . . , dk} from document collection D; then,

it builds the root set of query Q; that is, it generates the set PQ of all terms appearing in

any of the documents {di, . . . , dk}. Each term tj ∈ PQ is associated with a score sj defined

as follows:

sj = log10(10 + wj)

wj = α· tf(tj , Q)+
β

k

∑k

i=1
tf(tj , Di)· idf(tj ,D)

(3.1)

where tf(tj , Q) is the term frequency of term tj in Q, tf(tj , Di) is the term frequency of

term tj in document di, and idf(tj ,D) is the inverse document frequency of the j-th term

in the collection D, as defined in [50, ch. 2]. α and β are smoothing factors; the value of wj

is increased by ten before calculating sj to ensure that all scores are greater or equal to one.

In our implementation, the top 500 candidate terms ranked by sj are considered for query

expansion. This choice is due to efficiency reason and does not impact the performance of the

system, as the final number of expansion terms is, in all experiments, an order of magnitude

smaller.

In our experiments, we found the scoring method shown in Equation 3.1 is quite stable

with respect to the choice of parameters α and β: increasing or decreasing either of the two

parameters by up to an order of magnitude causes little variation in the performance of

the system. Therefore we set α = 2.0 and β = 0.75 as suggested in [27, 132]. On the other

hand, the number of top documents k does affect the retrieval performance of the algorithm;

therefore, we will discuss the tuning of this parameter in Section 3.4.5.

3.2.2 HTPRF Candidate Selection

Our unsupervised method uses the same candidate selection technique described in Sec-

tion 2.2.1.2: given a list of candidate terms {t1, . . . , tj}, a candidate term tj is kept if and

only if OR(tj) > δ, where δ is a tuning parameter of our system. Of the remaining candidate
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terms, the top m ranked by sj are considered for query expansion. This approach has two

advantages: (i) it removes terms that are either not-medically related, or very common in

both domains, and (ii) it prevents clinical jargon, which is not typically used to describe

medical conditions and treatment, from being included in the expansion terms.

As with k, the value of δ and m influence the performance of the retrieval algorithm; we

analyze the effect of different values for δ and m in Section 3.4.5.

3.2.3 Deep Neural Network (DNN ) Supervised Candidate Selection

We also approached query expansion as a supervised learning task where the goal is to

predict which candidate terms should be used to expand the query.

It is generally challenging to optimize systems that are evaluated with respect to ranking

metrics (such as mean average precision or discounted cumulative gain), as systems are

designed to predict a score for documents while loss functions are defined in terms of ranking

of documents [148]. For this reason, we decided to train our DNN to optimize a surrogate

metric, which we call weighted relevance ratio (WRR). WRR is designed to capture the

importance of a candidate terms extracted in the first stage for each query.

We used three groups of features to train our supervised model: word embedding rep-

resentations of the query and terms, statistical features over multiple auxiliary collections,

and other syntactical and semantic features. Word embeddings, a means of representing

terms from a vocabulary into a dense, low-dimensionality space, were obtained using the

word2vec model [90]. We detail the statistical features over external collections, as well as

syntactical and semantic features in Section 3.2.3.1.; we will refer to them as “candidate

features” (opposed to “candidate word embedding”) throughout the rest of the manuscript.

The WRR of a candidate is defined as the ratio of its probability of appearing in a

relevant document over its probability of appearing in the entire collection, weighted by its

own frequency in the relevant documents. Similarly to [89], we found odds ratio to be a

reliable indicator of importance in the relevant category. We scale the odds ratio of each
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term to prevent extremely rare terms from having a very high WRR score, as we empirically

noticed that such terms are often spelling errors or non-relevant terms. Formally, given a

term t, a collection D = {Pi}i=|D|i=1 of documents, and the set RQ of relevant documents for

query Q, RQ ⊂ D, we defined WRR as follows:

WRR(t) = log10 (cf (t,RQ) + 1) ·
Pr{t ∈ Pi ∧ Pi ∈ RQ}
Pr{t ∈ Pi ∧ Pi ∈ D}

(3.2)

We note that we scale the collection frequency cf(t,RQ) of term t in set of relevant

documents RQ by taking its log to prevent very frequent terms from having a high WRR.

The two probabilities are estimated using MLE, i.e. by dividing the number of documents

with term t by the total number of documents. We predict WRR using a regression with

mean squared error (MSE) as the loss function.

Our neural network consists of two components: a component that learns query and

term representations in order to compute the similarity between them, and a component

that predicts the candidate term’s WRR based on the term’s similarity with the query and

the candidate term’s features.

This design is modeled after the neural network proposed in [122], which learns query

and document representations in order to rerank pairs of short documents (i.e., pairs of

sentences and pairs of tweets). Our model primarily differs in that we use a single dense

layer to learn term representations, whereas Severyn and Moschitti [122] use a convolutional

network to learn representations of the sequences of terms in two short documents. This

change is due to that fact that, unlike their work, our system predicts the score of a single

candidate rather than a passage.

The purpose of the second component of our neural network model is to combine the

query-term similarity with additional features in order to make a WRR prediction. It consists

of two layers: (i) a dense (i.e., fully connected) layer that takes the query-term similarity

and candidate features as input (shown as query-term similarity and features in Figure 3.2)

and filters them with a ReLU activation function [96], and (ii) a dense layer that takes the
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Figure 3.2: Overview of the Deep Neural Network (DNN ) model. This supervised
candidate selection model consists of a query-term similarity component and a features com-
ponent. Each square represents a layer. Arrows indicate each layer’s input. Layer types are
shown in parentheses; Flatten and Merge layers modify their inputs’ shape without modi-
fying the input itself. Query-term similarity is computed by the query-term similarity layer
(shaded in gray in the figure) as described in the query-term similarity section, combined
with other features in the concatenate layer, and input to two dense layers (i.e., dense and
regression) to perform the regression based on the query-term similarity and the term’s
features.
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previous dense layer’s output as input and predicts the term’s WRR (i.e., concatenate and

its inputs in Figure 3.2). A detailed overview of the feature set is provided in Section 3.2.3.2.

Given a candidate term, query, and features, the neural network outputs the predicted term’s

predicted WRR.

We describe the training setup, as well as hyperparameters of the network in Sec-

tion 3.2.3.3.

3.2.3.1 Query-Term Similarity

Our query-term similarity component learns compact query and term representations and

computes their similarity with the help of a learned similarity matrix M . That is,

sim(rq, rt) = rqMrt (3.3)

where rq and rt are compact query and term representations, respectively.

We learn the query representation by using a 1-dimensional convolution over a word2vec

representation of the query, and applying nfilters filters to the convolution followed by max

pooling and a dense layer with a ReLU activation function and nrepresentation neurons (i.e.,

query representation in Figure 3.2). That is, the convolution layer combines each w-term

sliding window with nfilters filters to produce nfilters features for each sliding window, before

using max pooling to take the top 50% of query term sliding windows and creating a compact

representation of the query.

The convolutional layer’s purpose is to apply position-independent filters to w-term win-

dows of query terms. Without the convolution, the query representation would be dependent

on the exact position in the query each term appears in. The dense layer’s purpose is to

learn to reduce the dimensionality of the query representation; the representation vector

must be small both to generalize from training to testing and to match the dimensionality

of the term representation vector.

Similarly, we learn the term representation by feeding a word2vec representation of the

term to a single dense layer with a ReLU activation function and nrepresentation neurons (i.e.,
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term representation in Figure 3.2). As with the query representation dense layer, the term

representation dense layer’s purpose is to learn to reduce the dimensionality of the term

representation.

The output of these steps is a query representation vector rq and a term representation

vector rt with nrepresentation dimensions. Finally, we compute the similarity between rq and

rt as described above (i.e., using query-term similarity in Figure 3.2) and pass sim(rq, rt)

to the neural network’s second component (i.e., concatenate in Figure 3.2).

3.2.3.2 Features

Recently, Oh and Jung [99] showed that taking advantage of multiple document collections

leads to significant improvements in medical literature retrieval. Similarly, we consider sev-

eral collections of health documents to capture medical soundness of candidate terms, as well

as relationships between expansion candidates and query terms. The following collections

were used to obtain features for candidate terms:

• Khreshmoi project2 [51]: a collection of approximately 1.1 million web pages in

the health domain. Pages in the collection were sampled from websites that have

been certified by the HON foundation. Other known trustworthy websites were also

included.

• Health Wikipedia: 22,943 Wikipedia pages from its Portal of Medicine3. This set of

pages was extracted using the previously described information box heuristic.

• Wikipedia: a set of 5.9 million English Wikipedia pages collected on May 5, 2016.

While pages in this collection are not necessarily from the medical domain, it should

help discerning medical terminology from general domain terms.
2http://www.khresmoi.eu/
3https://en.wikipedia.org/wiki/Portal:Medicine
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• PubMed Central: the open access subset of PubMed Central4. The snapshot we use

— obtained on January 21, 2014 — is the same test collection used in the CDS track

at TREC.

• A.D.A.M. Medical Encyclopedia: a consumer-oriented medical encyclopedia. We

use the subset available through Medline Plus5, which consists of 1,789 pages. This

dataset was retrieved in May 2016.

• MedScape: a collection of 7,590 pages containing educational material (e.g., sum-

maries of diseases, descriptions of symptoms, lists of drugs interactions, differential

diagnosis sheets, etc.) for medical specialists, primary care physicians, and other health

professionals. The collection was retrieved in June 2016.

For each collection C and each candidate term t, we consider the inverse document fre-

quency (idf ) of the term in the collection as a feature. Specifically, the following formulation

of idf is used:

idf(t, C) = log10

(
|C|+ 1

df(t, C) + 1

)
(3.4)

where df(t, C) is the document frequency of term t in collection C, i.e., the number of

documents in C that contain t.

To capture the semantic relationship between query terms and candidate terms, we

extract, for each candidate term t, query term q, and collection C, the number Nt,q,C of

documents in which t and q co-occur; Then, for each t, we consider as feature the minimum,

maximum, average, and standard deviation of Nt,q,C for all terms in the query.

Finally, similarly to [128], we also consider the following features for each candidate term:

• The PRF score of the term, as defined in Equation 3.1.

• The odds ratio of the term, as defined in Equation 2.1.
4https://www.ncbi.nlm.nih.gov/pmc/
5https://medlineplus.gov/encyclopedia.html
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Table 3.1: Top 16 features ranked by the absolute value of their Spearman’s rank
correlation coefficient (ρs) with WRR.

Rank Feature ρs

1 HTPRF score 0.426
2 odds of being

in health Wikipedia
0.134

3 term is a noun 0.095
4 term is a verb -0.094
5 term is a

UMLS concept
0.093

6 MedScape
co-occurrence
st.dev.

0.089

7 English Wikipedia
idf

-0.083

8 MedScape
co-occurrence max.

0.082

Rank Feature ρs

9 term is part
of UMLS concept

-0.068

10 MedScape
co-occurrence avg.

0.067

11 Khreshmoi
co-occurrence min.

0.066

12 Khreshmoi
co-occurrence
st.dev.

0.064

13 Khreshmoi
co-occurrence max.

0.061

14 Health Wikipedia
co-occurrence min.

0.060

15 A.D.A.M.
co-occurrence
st.dev.

0.059

16 length of term 0.033

• The number of concepts in the UMLS metathesaurus that can be matched to the

candidate term; QuickUMLS [126] was used to identify concepts.

• The number of concepts in UMLS that contain the candidate term; note that this

differs from the previous features, as a term that is not a UMLS concept (e.g., “swine”)

can still appear as part of one (“african swine fever”).

• The length in characters of the candidate terms.

• The Part of Speech (PoS) of the candidate term (e.g., the candidate term is a noun,

verb, adjective, etc.).

In Table 3.1, we report the top 16 features, as determined by the absolute value of

their Spearman’s rank correlation coefficient (ρs) with WRR. We choose Spearman’s rank

correlation because the target value WRR—as well as many of the features—is not normally
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distribuited (Shapiro-Wilk test, two-tailed, p < 0.05). All correlations reported in the table

are statistically significant (two-tailed, p < 0.05).

We note the two top ranked features are the HTPRF score and the odds ratio of a term

appearing in health Wikipedia, two features that are used by HTPRF to select terms for

expansion. This implies that the improved HTPRF is a strong baseline for the supervised

method. Interestingly, the rank correlation suggests that candidate terms that are nouns

are more likely to appear in relevant search results (ρs = 0.095), while verbs are more

likely to appear in non-relevant search results (ρs = −0.094). As expected, collections whose

content is mainly health-related (MedScape, Khreshmoi, health Wikipedia, A.D.A.M.) all

have positive correlation with WRR, while English Wikipedia — which includes pages over

many domains — correlates negatively with WRR.

3.2.3.3 Implementation Details

For DNN , we train the neural network using the Adam algorithm [74] for up to 30 epochs.

Training is stopped early if loss fails to decrease on the validation set; in practice this

happens after approximately 15 epochs. Term word2vec representations [90] are obtained

by concatenating 300-dimensional word2vec representations trained for 25 epochs on the

PMC and Kreshmoi datasets described in the previous section. In the neural network’s

second component, we use a dense layer with 32 neurons. Our implementation of DNN

method leverages Gensim6 [113] and Theano7 [114]. Furthermore, spaCy8 [62] was used for

PoS extraction.

3.2.4 Query Reformulation

Both HTPRF and DNN can be used to expand the preprocessed query. For the former,

terms are ranked by their score; then, the top m candidate terms are used for expansion. As
6https://radimrehurek.com/gensim/
7http://deeplearning.net/software/theano/
8https://spacy.io/
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Figure 3.3: Distribution of the odds ratio of being relevant among terms in the
query. Terms whose odds ratio is less than 1 (left of red dashed line) are more likely to
appear in non-relevant documents than relevant documents. In our dataset, 832 query terms
(34.6% of terms) have odds ratio less than 1.

expected, the value of m affects the performance of the algorithm, as we will later discuss.

For DNN , the top 30 terms by predicted WRR are added to the query.

As previously mentioned, queries for this task are long and discursive. Through statistical

analysis, we determined that some terms in the queries are less likely to appear in relevant

documents than others; thus, we experimented with query reduction algorithms to improve

retrieval performance. In detail, the distribution of the odds ratio of terms is shown in

Figure 3.3. Of 2,403 terms across 60 queries, 35% of them have an odds ratio less than 1,

meaning that they are more likely to appear in non-relevant documents than in relevant

documents. It follows that an effective query reformulation strategy that removes most of

such terms would improve retrieval performances. However, Soldaini et al. [132] have shown

that query reduction techniques that rely on extraction of UMLS concepts do not improve the
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performance of a CDS search system. Therefore, in this, work, we investigated whether part-

of-speech (PoS) tags or syntactic dependencies could be used instead. We proceed as follows:

first, we extract Part-of-Speech (PoS) tags and syntactic dependencies associated with the

query. The two are coupled to identify all Noun Phrases (NP) in the query. The union of

all noun phrases are considered as reformulated query. Furthermore, in [27], we suggested

that Verb Phrases (VP) could have a significant impact in conveying the information need

of each query. In this dissertation, we set to study this by considering a query reduction

algorithm that keeps both VPs and NPs.

To summarize, the following types of queries are expanded using the candidate terms as

determined by the HTPRF and DNN :

• Preprocessed query (stopwords, numbers, and units of measurement removed). We will

refer to this method as “stopwords removal ”.

• Reduced preprocessed with terms t whose odds ratio of appearing in health Wikipedia

is greater than or equal to δ (i.e., OR(t) > δ). We will refer to this method as “odds

ratio reduction”.

• Reduced preprocessed query with only noun phrases. We will refer to this method as

“NP reduction”.

• Reduced preprocessed query with only noun phrases and verb phrases. We will refer

to this method as “NP+VP reduction”.

3.3 Experimental Setup

At the time we started investigating CDS search systems, no benchmark dataset containing

case reports or medical publications could be used to evaluate our system. As previously

noted, the information retrieval task introduced in CLEF eHealth Evaluation Lab [45, 46,

181, 182] is designed to evaluate search systems for consumers, not experts. OHSUMED [61]

provides relevance annotations on medical literature, but its queries are considerably shorter
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than a case report (6 vs 67.6 terms on average) and are keyword based. ImageCLEFmed

[72] studied multimodal literature retrieval for clinical practice; that is, it promoted sys-

tems designed for combining information from images and textual descriptions to retrieved

relevant clinical literature. Therefore, the system that we introduced in [132] was devel-

oped using an alternative experimental framework based on practice material for the United

States Medical Licensing Examination (USMLE). Construction and characteristics of this

dataset are detailed in Section 3.3.1. The dataset was also made publicly available9 for other

researchers to study.

In 2014, the Clinical Decision Support shared task was introduced at the Text REtrieval

Conference (TREC) [118]. The shared task captured the interest of many research teams,

and ran again the following years [116, 117]. Therefore, the two approaches introduced in

Section 3.2 were also evaluated TREC CDS 2014 and 2015 dataset, which I discuss in

Section 3.3.2.

Finally, I briefly discuss unsupervised and supervised baselines in Section 3.3.3. These

methods are compared to the proposed systems in the results section 3.4.

3.3.1 Synthetic USMLE Dataset

At the time we started working on CDS search, the lack of datasets suitable to evaluated

CDS search system required us to create our own. To create a benchmark for evaluation, we

developed [132] an approach to automatically identify relevant documents to case reports

by making use of external information about each case report (the correct diagnosis, treat-

ment or test associated with each one as well as explanations about the correctness of such

relations). Our dataset contains two components: medical papers and medical case reports.

The medical literature was obtained from Open Access Subset of PubMed central10, a free

full-text archive of health journals (728,455 documents retrieved January 1, 2014).

9https://github.com/Georgetown-IR-Lab/CDS-search-dataset
10http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
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31 
 

87. A 14-year-old girl is brought to the physician by her mother because of a 2-month history of heavy vaginal bleeding 
during menstrual periods. She has had episodes of excessive periodontal bleeding while brushing her teeth and easy 
bruising for 6 years. She also had an episode of extended bleeding after a tooth extraction 4 years ago. Her mother 
and brother have had similar symptoms. Physical examination shows patchy ecchymoses over the upper and lower 
extremities. Laboratory studies show: 
 

Platelet count 234,000/mm3 
Bleeding time 17 min 
Prothrombin time 12 sec (INR=1) 
Partial thromboplastin time 46 sec 

 
Which of the following is the most likely diagnosis? 

 
(A) Factor VII (proconvertin) deficiency 
(B) Factor X (Stuart factor) deficiency 
(C) Factor XII (Hageman factor) deficiency 
(D) Hemophilia A 
(E) Vitamin K deficiency 
(F) von Willebrand disease 

 
 
88. A previously healthy 40-year-old man is brought to the emergency department because of constant substernal chest 

pain for 12 hours that is exacerbated by coughing and inspiration. The pain is relieved with sitting up and leaning 
forward. There is no family history of heart disease. His temperature is 38°C (100.4°F), pulse is 120/min, and blood 
pressure is 110/60 mm Hg. The lungs are clear to auscultation. Cardiac examination shows distant heart sounds. An 
ECG shows diffuse ST-segment elevation in all leads. An x-ray of the chest shows normal findings. The most likely 
cause of his condition is injury to which of the following tissues? 

 
(A) Aortic intima 
(B) Esophageal sphincter 
(C) Myocardium 
(D) Pericardium 
(E) Pleura 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

Figure 3.4: Sample of case report for a USMLE Step 1 prep book exam.

495 medical case reports were obtained from three USMLE preparation books11. An

example is shown in Figure 3.4. Each case report contains a description of a patient followed

by a question asking for the correct diagnosis, treatment, or test that should be executed.

Case reports from USMLE are modeled after real clinical situations with goal of assessing

the ability of future physicians in applying clinical knowledge, concepts and principles for

effective patient care12.

Given a case report, our goal was to retrieve documents (medical publications) that can

help a physician diagnose the patient, treat the patient’s condition, or request a test relevant

to the case; the content of three USMLE prep books were used to determine which documents

in our collection were relevant. In detail, we took advantage of the multiple answer choices

associated with the case reports as well as the explanation of why an answer is correct.

To determine relevant documents for each case report, we separately issued as queries the

explanation paragraph (qe) and each answer choice individually (qa0 , . . . , qa3). Documents

retrieved by the correct answer qacorr and qe received a relevance score of two, while docu-

ments retrieved by qe and any incorrect answer choice were given a score of one. By using this

approach, we were able to take into account that not only the correct documents retrieved by
11https://github.com/Georgetown-IR-Lab/CDS-search-dataset
12Bulletin of Information, http://www.usmle.org/pdfs/bulletin/2012bulletin.pdf
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querying the correct answer contribute to determine the right treatment/test/diagnosis, but

also those related to the incorrect options. Any answer choice query (qai ,∈ {0, . . . , 3}) that

contained more than 200 documents was discarded under the assumption that the query

was too broad. A case report was discarded if its correct answer choice query was discarded.

This process left us with 195 valid queries (i.e., case reports).

Three human assessors were then instructed to read each of these case reports and

determine their validity. Specifically, they were asked to categorize each one as invalid or

as asking for a diagnosis, treatment, or test. Invalid queries were those that were primarily

quantitative (i.e., contained only numeric values about some tests or vital signs e.g. blood

pressure, heart rate, body temperature, etc). The three assessors’ inter-rater agreement was

0.56 as measured by Fleiss’ kappa13. Any query deemed invalid by at least two assessors

was discarded. This left us with 85 case reports; of those, 17 were reserved for parameters

tuning, while the remaining 68 were used for testing.

We used Elasticsearch14, a search server built on top of Lucene15, to index the medical

documents in our dataset and to retrieve results. The default tokenizer and the divergence

from randomness retrieval model [5] were used.

3.3.2 TREC CDS Dataset

The effectiveness of the proposed methods was also studied on the datasets introduced in

the CDS track at TREC 2014 [118] and TREC 2015 [116]. The two dataset share the same

documents collection, but have different sets of test queries. A summary of the characteristics

of the two datasets is provided in Table 3.2.

The document collection in the datasets is of a snapshot of the open access subset of

PubMed Central (PMC), a database of biomedical literature available online free of charge.
13The moderate level of agreement between assessors is attributable to the hardness of the task.

The evaluators reported that many reports laid in the spectrum between fully quantitative and fully
qualitative, thus representing a noteworthy challenge.

14https://www.elastic.co/products/elasticsearch
15https://lucene.apache.org
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Table 3.2: Statistics of datasets used in the 2014 and 2015 CDS track at TREC.

Dataset
year

Documents Queries Qrels
number has

title
has
abstract

has
body

number average
length

relevant non
relevant

2014
733,138 100% 86% 88% 30

78.6 3,356 34,594
2015 83.3 4,990 32,818

The same documents collection was used both years. “Qrels” is set of documents whose
relevancy has been assessed by TREC organizers.

The snapshot was defined by the organizers of the CDS track as the subset of all documents

in PMC published before January 21, 2014. It contains 733,138 documents, totaling approx-

imately 9.5 GB in size. Each article is in NXML format16. From each article, we extract the

title, the abstract, and all sections in the body of the paper. Although all articles in PMC

have a title, not all of them include a body or an abstract section. In the snapshot provided

by the organizers of the CDS track, 14% of the articles have no abstract and 12% have no

body. However, all articles have at least one of the two sections.

Gobeill et al. [43] computed the distribution of article types on the collection and on the

set of relevant documents for the 2014 queries. Their work showed that 74.3% of articles in

the collection are research articles (case reports: 4%; review articles: 6.9%; other: 15.8%).

Similarly, 52.2% of relevant articles are research articles, 20.4% are case reports, and 17.9%

are review articles. The remaining 9.5% belong to other categories.

Compared to our previous system [27, 132], citation markers were removed using regular

expressions; furthermore, we also removed table and figure captions. This more thorough

preprocessing step is partially to credit for the improvements over our previous results.

The queries in the CDS dataset were created by clinical informatics experts (all of whom

were physicians) at the US National Library of Medicine. In the reminder of this section,
16NXML is a XML-compliant format whose tags are specified in the US National Library of

Medicine’s Journal Archiving and Interchange Tag Library. A full specification is available at the
following location: http://jats.nlm.nih.gov/archiving/versions.html.
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we provide a brief description of them; we remand the reader to [118] for more details. Each

query is comprised of three sections: a title, a summary, and a description. The description

field was created to resemble a typical sign-out note (that is, a clinical note containing a brief

history of a patient) in use at many hospitals when a patient is transfered across departments.

In the words of the CDS track organizers, this process was done to “replicate the types of

information contained in EHR notes, thus providing as near as possible a realistic evaluation

of how such a retrieval system would perform in a clinical environment.”

The information need of each query falls into one of these three categories: make a

diagnosis, determine a test to confirm a diagnosis, establish the most appropriate treatment

after diagnosis. We will refer to this categories as “diagnoses”, “treatments”, and “tests”

throughout the rest of the manuscript. The three categories were chosen because previous

research has shown that questions regarding diagnoses, treatments, and tests account for

a 58% of the clinical questions posed by primary care physicians [33]. For each query, a

summary and title were also provided. However, none of the proposed methods consider

them for retrieval, as the description field is a more accurate representation of the search

task studied in this dissertation.

3.3.3 Baselines

3.3.3.1 Unsupervised Techniques

UMLS Concepts Selection (MMselect)

We extract concepts from queries based on concepts defined in the Unified Medical

Language System17 (UMLS) to perform query reduction. For this extraction we utilize

MetaMap18, a tool designed for UMLS concept extraction. We reformulated the query by

removing all the terms that did not have a mapping to any UMLS concepts.
17http://www.nlm.nih.gov/research/umls/
18http://metamap.nlm.nih.gov/

70

http://www.nlm.nih.gov/research/umls/
http://metamap.nlm.nih.gov/


UMLS Concepts Extraction (MMexpand)

Similar to MMselect method, this method identifies UMLS Metathesaurus concepts that

exist in the query using MetaMap. However, rather than filtering out terms, this method

expands the query using new terms associated with the concepts identified. After detecting

the concepts in the query, expansion terms were chosen by querying UMLS for new terms

that were synonyms of the concepts in the query and were marked as preferred terms by

UMLS; the query was expanded with all these terms. Given the extensive coverage of UMLS,

we limited concept expansion to concepts containing drugs, diseases, and findings to prevent

query drift.

Health-related Terms Selection (HT )

In an effort to estimate the impact of each component of the HTPRF method, we tested

the health term filter described in Section 2.2.1.2 (equation 2.1) as a query reduction tech-

nique. Parameter δ for this method were tuned independently from HTPRF .

Pseudo Relevance Feedback (PRF , SNUMedinfo, NovaSearch)

Similarly to HT , we also evaluated the impact of the PRF component of HTPRF and

DNN separately. This method uses the candidates’ scores described in Section 3.2.1; in

particular, the score sj computed for each term tj using equation 3.1 is considered when

selecting the top k terms for expansion. Like in the case of HT , parameters k and m for this

method are tuned independently from HTPRF .

Beside our original formulation of PRF , we also compared our approach with the query

expansion methods introduced by Choi and Choi [25] and Mourao, Martins, and Magalhaes

[94]. These two approaches, previously described in the related works section (Section 3.1),

are two top-performing query reformulation methods on the TREC CDS 2014 dataset [118].
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3.3.3.2 Supervised Techniques

Query Quality Predictors for Query Reduction (QQP)

We implemented the learning to rank framework described by Kumaran and Carvalho

[78]. This method uses quality predictors as features to rank sub-queries of the original

query using SVMrank [69]. The following predictors are considered as features:

Mutual information Each sub-query is represented as a fully connected weighted graph,

where each vertex represents a term in the sub-query. Edges are weighted by mutual infor-

mation as follows:

MI(ti, tj) = log

co(ti,tj)
T

n(ti)
T ·

n(tj)
T

(3.5)

Where co(ti, tj) is the number of times terms ti and tj appear within 100 tokens in any

document in the collection, n(t) is the number of times terms t appears in the collection,

and T is the size of the collection. For each graph, the heaviest spanning tree is extracted;

the average weight of the edge is used as query predictor.

Query clarity Estimation of the divergence of the query model from the collection model

using the top 500 documents retrieved per sub-query.

QC =
∑
t∈Q

Pr(t|Q)· log2
Pr(t|Q)

Prcoll(t)
(3.6)

Where Pr t|Q is the probability of token t of occurring in the query model and Prcoll(t)

is the probability of t of appearing in the collection.

Simplified clarity score Simplified version of clarity score that estimates the probability of

a term in the language model by considering the likelihood of it appearing in the query.

Query scope Measure of the size of the retrieved set of documents relative to the size of

the collection.
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QS = − log(
nq
T
) (3.7)

Where nq is number of documents in the collection containing at least one query term.

Sub-queries showing high query scope are expected to perform poorly since they contain

terms that are too broad.

Similarity to original query Tf-idf similarity is considered as one of the quality predictors

under the hypothesis that the closer a sub-query is to the original query, the less likely it is

to cause intent drift.

In addition to the previously listed features, QQP considers, for each sub-query, statis-

tical measures19 over the term frequency, document frequency and collection frequency of

the terms in the sub-query as features for SVMrank. The length of each sub-query is also

considered as a feature. Interested readers should consult the original paper [78] for more

details.

Since most of the query predictors are query dependent, they cannot be computed ahead

of time, thus slowing the sub-query selection process. Therefore, as suggested by the authors,

we implemented a set of heuristics to reduce the number of candidate sub-queries, which,

prior to pruning, is exponential to the size of the original query: (i) select queries with length

between three and six terms; (ii) select only the top twenty five sub-queries ranked by MI;

(iii) select only the sub-queries containing name entities. The parameters for SVMrank were

set as suggested in [78].

Fast Query Quality Predictors (Fast QQP)

Since QQP was not designed specifically for CDS search, its performance is negatively

affected by the greatly reduced length of the generated sub-queries and by the lack of

domain-specific features. Because of the unique formulation of case reports, we implemented
19 Maximum and minimum value; arithmetic, harmonic, and geometric mean; standard deviation

and coefficient of variation.
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a set of sub-query candidates pruning heuristics that resulted in statistically significant

improvements over the original formulation while reducing the processing time.

First, we increased the maximum length Msubq of a sub-query candidate from 6 to 16

terms (empirically determined). This is motivated by the fact that case reports are, on

average, much longer than the queries in [78] (16.2 vs. 67.6 terms). The minimum length of

a sub-query was not altered (i.e., msub-q = 3).

As the size of the candidates set grows exponentially when the maximum number of

tokens increases linearly, Fast QQP prunes the list of candidates after each increase in

length of candidate sub-queries. In other words, for each i ∈ {msubq, . . . ,Msubq}, the set of

candidates Ci is ranked by MI; the top-k sub-queries are then extracted (set Ci,k) and used

to build the set Ci+1 accordingly with the following formula:

Ci+1 = {sl ∪ {qh} | sl ∈ Ci+1 ∧ qh ∈ Q} ∪ Ci,k (3.8)

where Q is the original query. After empirical evaluation, we set k = 50.

We further improved Fast QQP by including some domain-specific features:

• number of UMLS concepts in the candidate sub-query;

• semantic type of the UMLS concepts in the candidate sub-query;

• statistical features over the likelihood of each term in the candidate sub-query of being

health related, as estimated by equation (2.1);

• number of MeSH terms in the candidate sub-query.

WSU-IR

We also compare our work with the model introduced by Balaneshin Kordan, Kotov, and

Xisto [7]. This system leverages a Markov Random Field model to parameterize query expan-

sion. Briefly, a mixture model is used to estimate importance weights of expansion terms

with respect to the primary metric of the task (in this case, inferred nDCG). Features that
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Table 3.3: Performance of baselines and proposed methods on the USMLE
dataset.

nDCG Recall P@5
baseline 0.2855 – 0.2741 – 0.1824 –
MMselect◦ 0.1622O (−43.2%) 0.1486O (−45.8%) 0.1059O (−41.9%)
MMexpand• 0.3020 (+5.8%) 0.2958 (+7.9%) 0.1676 (−8.1%)
QQP◦ 0.2557O (−10.4%) 0.2494 (−9.0%) 0.1118O (−38.7%)
Fast QQP◦ 0.3177M (+11.3%) 0.3129M (+14.2%) 0.1471O (−19.4%)
HT◦ 0.3328M (+16.5%) 0.3262M (+19.0%) 0.1882 (+3.2%)
PRF• 0.3390M (+16.5%) 0.3263M (+19.0%) 0.1765 (−3.4%)
HTPRF• 0.3768 M (+32.0%) 0.3520 M (+28.9%) 0.2382 M (+30.5%)

The symbol ◦ indicates query reduction methods, while • indicates query expansion methods.
A M/O indicate a significant improvement/worsening (Student t-test, Bonferroni-adjusted,
p < 0.0071) over the baseline.

are used to weight terms are based on whether they appeared in the query, in top retrieved

documents, or in the UMLS ontology. This method achieved state of the art performance at

TREC 2015 [116].

3.4 Results

In detail we first compare the unsupervised method with several baseline on the work intro-

duced in [132]. Then, we compare both methods with the state of the art; we follow by

studying the effect of query reduction techniques when combined with HTPRF and DNN

query expansion methods; furthermore, we analyze the impact of individual features on the

performance of the DNN method; finally, we detail the process of tuning parameters for

HTPRF and DNN on the TREC datasets.

3.4.1 Comparison of Reformulation Methods on USMLE Dataset

As previously mentioned, CDS search is a precision oriented task; it is meant to support

healthcare professionals who are looking for findings that could help them determine the

next action in the care of a patient. For this reason, performance at the first ten points
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Figure 3.5: Points of precision for each method. The best performing method,
HTPRF , achieves a 43% increase over the baseline for P@1.

of precision (Fig. 3.5) is key to assert the quality of a reformulation method. We focus

our analysis on precision at five documents retrieved (P@5), as the performance of each

method is consistent throughout the first ten points (Fig. 3.5, left) of precision and show

no significant difference up to P@100 (Fig. 3.5, right). Recall and nDCG are also reported

(Table 3.3); these metrics, albeit less key to the task, are still useful indicators to assert the

overall quality of each method. We use a paired Student’s t-test to measure whether the

difference between any two methods is statistically significant (p < 0.01).

MMselect performed significantly worse than the baseline. We attribute such difference

to the fact that, while it successfully identifies most medical concepts in the query, it often

discards terms that have a key role connecting domain specific expression.MMexpand showed

a minor but significant gain in terms of nDCG and recall over the baseline, but it performed

worse (although not significantly) than the baseline in terms of P@5. We attribute the modest

difference to the limited coverage of the portion of the synonym map in UMLS MMexpand

uses with respect to the size of our dataset. This trade-off was necessary to prevent query

drift.
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QQP performed very poorly. Its limited performance is due to its aggressive reduction

algorithm, which reduces the original query to at most six terms. As result, the reduced

query loses most of the information content of the case report.

Fast QQP showed substantially better nDCG and recall results, but fell short in terms of

P@5. We attribute the improvement to the fact that the inclusion of domain specific features

and a more conservative approach lead to a more effective reduction. On the other hand, the

worsening in terms of P@5 is likely due to the insufficient coverage of medical terms in the

query: in medical literature, the same concept is often expressed using different terms and

expression; thus a method that only performs reduction is likely to miss documents that are

relevant to the case report, but differ from it in terms of vocabulary.

Both HT and PRF methods showed a statistically significant improvement over the base-

line in terms of nDCG and recall; HT removes common non-health-related terms, whereas

PRF reweights the entire query, increasing the importance of health-related terms, which

naturally have a high IDFQE coefficient given the domain of the dataset. In HT some

improvement is expected, as it keeps more generalized medical concepts in comparison with

the UMLS concept selection method. Neither HT nor PRF showed significant improvement

in terms of P@5. HT is likely to suffer from the same limitation in terms of vocabulary

coverage Fast QQP has, while PRF is partially affected by query drift.

We achieved the most noteworthy results by using the HTPRF . The nDCG and recall

values shown in Table 1 are statistically significant not only with respect to the baseline but

also over simple PRF and HT . Moreover, HTPRF consistently improves over the baseline

for each precision level shown in Fig. 2 (p < 0.01). The substantial increase in performances

of HTPRF is due to the fact that it combines two very effective techniques: by expanding

the query using the most relevant document, it is able to broad its vocabulary; on the other

side, filtering the list of candidate terms for expansion prevents query drifting.
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Table 3.4: Comparison of the proposed systems (last two rows) with a baseline
method and the state of the art.

System
2014 dataset 2015 dataset

infNDCG P@10 infNDCG P@10

Baseline
case report used as query

0.1546
-84.7%

0.2500
-56.0%

0.1729
-70.0%

0.3133
-54.2%

HTPRF baseline (tuned on
USMLE dataset)
[131]

0.2272
-24.7%

0.3200
-21.9%

0.2296
-28.0%

0.3367
-43.5%

SNUMedinfo
[25]

0.2674
-5.9%

0.3633
-7.3%

n/a n/a

NovaSearch
[94]

0.2631
-7.7%

0.3900 0.2242
-31.1%

0.3567
-35.5%

WSU-IR
[7]

n/a n/a 0.2939 0.4667
-3.6%

HTPRF 0.2567
-10.3%

0.3733
-4.5%

0.2653
-10.8%

0.4833

DNN 0.2833 0.3600
-8.3%

0.2744
-7.7%

0.4300
-12.4%

For each column, the best result is in bold.

3.4.2 Comparison with State of the Art Systems

In Table 3.4, we report the performance of our methods on the 2014 and 2015 TREC

CDS datasets. As previously mentioned, we compare the proposed approaches with the best

approaches for the task, as well as with our previously proposed method. We also include a

baseline system that uses the case report as query (no expansion; stopwords, numbers, and

units of measurement removed). This baseline represents an important point of comparison

with the two methods introduced in this dissertation, since it is used as a first step to retrieve

the top documents used to generate candidate terms for query expansion. We note that some

results are missing due to the fact that some of the teams have not participated in both

years.

78



Table 3.5: Example of terms added to the query shown in Figure 3.1 by the
HTPRF (left) and DNN (right) methods.

HTPRF DNN
anorexia autonomic case diagnosis dis-
order distress episodes excessive fatigue
gastrointestinal medication nervosa noc-
turnal onset patient psychiatric report
restless severe signs sleep symptoms syn-
drome tachycardia thyroid thyrotoxic thyrotox-
icosis treatment tremor

anorexia antithyroid emptying fatigue
gastric graves hyperthyroidism hypo-
glycemia insomniacs meal methimazole
milnacipran nervosa prandial propranolol
remission remittent reuptake sertraline
symptoms syndrome tachycardia thyroid thy-
roiditis thyrotoxic thyrotoxicosis triazolam

Terms in bold are exclusive to a method. For this query, HTPRF achieves higher P@10 (0.6
vs 0.3), but DNN achieves better infNDCG (0.419 vs 0.2506).

Both systems proposed in this dissertation fare well against the state of the art. On

the 2014 dataset, the DNN expansion approach outperforms any other method in terms

of inferred NDCG, while NovaSearch achieves a better precision at 10. This behavior is

expected, as NovaSearch uses a formulation of PRF in which expansion terms are chosen

among high tf-idf terms in few top-ranked documents; this implicitly optimizes for precision

at top ranked results. On the other hand, our DNN method is trained to choose terms based

on WRR, which does not take into account their tf-idf score. On the 2015 dataset, the DNN

method underperforms the state of the art, as well as the other method proposed in this

dissertation, when measured by precision at 10.

The improved HTPRF method is also very competitive with respect to state of the art

methods. The run reported in Table 3.4 uses odds ratio on Wikipedia to reduce the query

before expanding it; a more detail analysis of query reduction is provided in a later section.

Overall, we notice that, unlike the DNN expansion technique, HTPRF favors precision at

10 over inferred NDCG. This could be a desirable characteristic of this method in those

situations were obtaining a small set of highly relevant literature is preferred. On the 2014

dataset, HTPRF achieves a precision at 10 comparable to NovaSearch; on the 2015 dataset, it
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outperforms the state of the art, although WSU-IR achieves better infNDCG. We explain the

substantial improvement in performance of HTPRF by observing that the baseline method

— which is used to obtain the top k documents from which expansion terms are extracted

— is also much more effective on the 2015 dataset, especially in terms of precision at top

ranked results. This causes HTPRF to select more relevant terms from the top documents,

which explains the increase in performance.

When comparing HTPRF with the DNN method, a few interesting observations can be

made. First, we note that, for both methods, precision at 10 results and inferred NDCG

strongly correlate (Pearson’r, ρ = 0.7612 for HTPRF , ρ = 0.7885 for supervised query

expansion, p < 0.05 for both).

However, as shown in Figure 3.6, the relative performance of two methods vary depending

on the query. In 25 out of 60 queries HTPRF outperforms the DNN method; the opposite

occurs in the remaining 35 queries. On average, the DNN method outperforms HTPRF on

diagnosis and tests, while the opposite happens for treatments. However, the difference is

not statistically significant (Student t-test , two-tailed, p = 0.83, p = 0.87, and p = 0.77

respectively). Thus, we cannot conclude that the difference in infNDCG between the two

methods is due to type of information need associated with the query.

Finally, we point out that the DNN method is more likely to choose UMLS concepts as

expansion terms; on average, 82.3% of expansion terms selected by the DNN method are

UMLS concepts, while only 72.5% of terms chosen by HTPRF are present in the metathe-

saurus (difference is statistically significant, Student t-test, two-tailed, p < 0.05). Using the

semantic type associated with each concept and the taxonomy introduced in [80], we were

able to determine the aspects of the medical decision that the concepts chosen by the two

methods belong to. For HTPRF , 18.5% of the terms are a diagnostic procedure or test

(DNN : 19.3%), 17.1% are diseases (DNN : 19.7%), 32.5% are symptoms (DNN : 26.4%),

and 20.3% are treatments (DNN : 23.4%). The remaining (11.6% and 11.2%) refer to other

semantic types.
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Figure 3.6: Difference in infNDCG between HTPRF and the DNN method
for each query. Negative values are associated with queries in which the DNN method
outperforms HTPRF .

3.4.3 Impact of Query Reduction

Previous work [27, 132] has suggested that query reduction could improve retrieval per-

formance; therefore, we studied the impact of several query reduction techniques on the

performance of both methods introduced in this dissertation. As previously mentioned, we

set out to evaluate three query reduction techniques, and compared them with the orig-

inal query (with stopwords, numbers, and units of measurement removed). Results for both

methods are shown in Tables 3.6 and 3.7.

As shown in Table 3.6, removing terms that are less likely to appear in medical pages

on Wikipedia is an effective strategy when combined with HTPRF , However, this technique

is equally effective when combined with the DNN expansion method. We hypothesize that

this is due to the fact that Equation 3.1 is likely to assign higher scores to terms that

are semantically close to those in the query; thus, by removing less medically sound terms

from the original query, we achieve an improvement in inferred NDCG. Conversely, the
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Table 3.6: Comparison of several query reduction techniques on the improved
HTPRF method.

System
2014 dataset 2015 dataset
infNDCG P@10 infNDCG P@10

improved HTPRF
stopword removal

0.2541 0.3567 0.2703 0.4800

improved HTPRF
odds ratio reduction

0.2567 0.3733 0.2653 0.4833

improved HTPRF
NP reduction

0.2523 0.3633 0.2634 0.4367

improved HTPRF
NP+VP reduction

0.2512 0.3533† 0.2621 0.4433*

Query reduction using odds ratio achieves the best results except for a modest decrease
in infNDCG on the 2015 dataset. However, the difference between runs is not statistically
significant (Student t-test, two tailed, p > 0.05).

DNN expansion method selects more diverse terms, thus increasing the need of keeping less

medically sound terms in the query. This is evidenced by the fact that average distance

between UMLS concepts in the query and UMLS concepts in the candidate terms selected

by HTPRF is 3.25 nodes in the UMLS graph, while the average distance for terms selected

by the DNN method is 5.68 (difference is statistically significant, Student t-test, two-tailed,

p < 0.05.)

Furthermore, we notice that, for the DNN expansion method, there exists a trade-off

between infNDCG and P@10 when more aggressive query reduction algorithms are used

(Table 3.6 and 3.7). “NP reduction” and “NP+VP reduction”, which shorten the query

substantially, cause an increase in inferred NDCG, but negatively affect precision at 10

retrieved results.

Overall, we note that query reduction techniques show limited improvement over the

original method. As evidenced in Table 3.6 and 3.7, none of the reduction methods show

statistically significant improvements in terms of infNDCG over simple stopwords removal
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Table 3.7: Comparison of several query reduction techniques on the DNN expan-
sion method.

System
2014 dataset 2015 dataset
infNDCG P@10 infNDCG P@10

DNN expansion
stopwords removal

0.2833 0.3600 0.2729 0.4300

DNN expansion
odds ratio reduction

0.2842 0.3700 0.2698 0.4167

DNN expansion
NP reduction

0.2865 0.3500 0.2744 0.4133

DNN expansion
NP+VP reduction

0.2919 0.3400 0.2695 0.4267

NP reduction achieves the best infNDCG on the 2014 dataset, NP+VP reduction on the
2015 dataset, but both perform poorly in terms of P@10. Overall, the difference between
runs is not statistically significant (Student t-test, two tailed, p > 0.05).

(Student t-test, two-tailed, p > 0.05). The biggest improvements are with respect to P@10;

when used with HTPRF , odds ratio reduction; however, it is less effective when paired with

the supervised expansion method (DNN ). When compared with the baseline, odds ratio

reduction shows the best improvements on the 2014 dataset, while it performs similarly or

worse on the 2015 dataset.

3.4.4 Impact of DNN Method Features

In this section we study the impact of different feature types on our DNN expansion method.

To do so we individually evaluate (i) the query-term similarity component and feature

component of our model, (ii) classes of features, and (iii) features derived from specific

collections. The results are shown in Table 3.8. None of the changes in infNDCG and P@10

are statistically different from the model’s performance with DNN expansion: query-term

similarity & features (Student t-test, two-tailed, p > 0.05). This can be attributed to the

low number of queries in our datasets. While excluding features can cause the average
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Table 3.8: Impact of model components, feature groups, and document collec-
tions on the DNN model’s performance.

System
2014 dataset 2015 dataset
infNDCG P@10 infNDCG P@10

DNN expansion
both (query-term sim. & features)

0.2833 0.3600 0.2744 0.4300

DNN expansion
query-term similarity only

0.2501 0.3100 0.2785 0.4200

DNN expansion
features only

0.2726 0.3467 0.2714 0.4167

DNN expansion
both excluding IDF features

0.2766 0.3033 0.2808 0.4400

DNN expansion
both excluding co-occurr. features

0.2640 0.3600 0.2727 0.4233

DNN expansion
both excluding UMLS features

0.2709 0.3633 0.2665 0.4167

DNN expansion
both excluding PRF features

0.2545 0.3567 0.2785 0.4233

DNN expansion
both excluding odds ratio feature

0.2762 0.3500 0.2761 0.4300

DNN expansion
both using only Wikipedia features

0.2631 0.3567 0.2748 0.4100

DNN expansion
both using only A.D.A.M. features

0.2606 0.3433 0.2767 0.4233

DNN expansion
both using only PubMed features

0.2517 0.3567 0.2854 0.4233

DNN expansion
both using only MedScape features

0.2627 0.3433 0.2691 0.4167

infNDCG and P@10 to change substantially, this change in the average metric is caused by

substantial changes to a small number of queries. Over all the runs shown in Table 3.8, no

more than 9 queries per run ever experience a change in infNDCG or P@10 greater than

0.1. The average number of queries experiencing such a change is much smaller; 3 queries

for infNDCG and 7 queries for P@10 on the 2014 dataset, and 1 query for infNDCG and

4 queries for P@10 on the 2015 dataset. These values are much smaller than the number

of queries for which P@10 changes in Tables 3.6 and 3.7: all runs that show a statistically

significant difference experience a change in at least 13 out of 30 queries. We attribute this

difference to the fact that query reduction methods potentially modify the entire expanded
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query, while the process of tuning the feature set for the supervised method only affects

which new query expansion terms are added to the initial query.

The model’s performance using both components, only the query-term similarity compo-

nent, and only the feature component are shown in the first three rows, respectively. While

the 2015 infNDCGs are similar regardless of which components are used, using only the

query-term similarity component substantially harms infNDCG and P@10 on the 2014 data

set. The model performs better on the 2014 data when using only the feature component,

but both components are necessary to achieve the best results.

The model’s performance when different classes of features are excluded is shown in the

next five rows of Table 3.8. The biggest change in performance as measured by infNDCG

occurs when the UMLS features are excluded, causing the 2014 infNDCG to decrease from

0.2833 to 0.2709 and the 2015 infNDCG to decrease from 0.2744 to 0.2665. Excluding co-

occurrence features and excluding PRF features both cause substantial decreases in perfor-

mance on the 2014 data, but do not substantially affect the results on the 2015 dataset.

Similarly, excluding the IDF features and excluding the odds ratio feature cause smaller

decreases on the 2014 infNDCG, but slightly increase the 2015 infNDCG. We conclude that

the UMLS features have the most impact on our model’s performance, followed by the

co-occurrence and PRF features.

Table 3.8’s final four rows show the impact on performance when only features from

specific collections are used (i.e., the co-occurrence and IDF features derived from a given

collection). PubMed features perform the worst in terms of 2014 infNDCG, but perform the

best in terms of 2015 infNDCG. The other three collections perform similarly, with MedScape

performing slightly worse on 2015 infNDCG but not on 2014 infNDCG. This suggests that,

when they are used independently, these three collections are somewhat interchangeable

for the purpose of deriving co-occurrence and IDF features. The results improve when all

the collections are used, however, suggesting that they are also complementary and it is

beneficial to use multiple collections.
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Figure 3.7: Effects of number of expansion terms (m, left), top documents (k,
center), and minimum odds ratio (δ, right) on the performance of HTPRF , as
measured by infNCCG (top) and P@10 (bottom.) We chose m = 30, k = 40, δ = 1.

3.4.5 Parameter Tuning

In this section we describe the tuning process we followed for our methods. In the case

of HTPRF we chose the number of expansion terms m, the number of top documents k,

and the minimum odds ratio δ for HTPRF . Our goal was to choose parameters that would

maximize infNDCG across both datasets. The results of our optimization phase are shown

in Figure 3.7. Alongside the effect of each parameter on infNDCG, we also present their

effect on P@10.

We observed that HTPRF is moderately stable with respect to the choice of its param-

eters: even when varying m or k by two orders of magnitude, infNDCG was affected by at

most 15%. However, HTPRF behaved differently between the two datasets. On the 2014

dataset, a smaller number of expansion terms and top documents achieves the best per-

formances, while larger values of m and k were necessary to achieve better infNDCG on

the 2015 dataset. Since queries in the two datasets are of similar length and structure, we
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suspect that the differences in size of the pool of relevant documents (as shown in Table 3.2)

might explain the different behavior: fewer relevant documents exists for the queries in the

2014 dataset. Thus, large values of k and m may cause query drift. Conversely, larger values

of k and m are appropriate for the 2015 dataset, as more presumably relevant documents are

considered to choose expansion candidates. Ultimately, because infNDCG is less sensitive

to changes in k and m than P@10, we choose the values of k and m that maximize P@10;

that is, we set m = 30 and k = 40. We stress that we did not intentionally choose the same

parameters for the 2014 and 2015 datasets; rather, because of the heuristic described above,

the two parameters set happen to be the same.

Contrary to k and m, the behavior of δ was consistent across the two dataset. Large

values of δ caused too few terms to be selected for expansion, thus reducing the performance

of HTPRF . Unlike infNDCG, P@10 behaves similarly across the two datasets when tuning

parameters are varied.

To achieve a good balance between the two datasets, we chose the tuning parameters for

our dataset by performing ten fold cross validation on the 2014 and 2015 datasets combined.

In seven out of ten folds, parameters m = 30, k = 40, δ = 1 maximized infNDCG; therefore,

we chose such combination for all experiments reported in this section.

The DNN ’s parameters include the number of expansion terms m, the convolution size,

the number of filters nfilters, and the term and query representation size nrepresentation. We

found m = 30 terms to perform best on the 2014 dataset in terms of infNDCG. On the

2015 dataset varying the number of terms between 5, 10, 20, and 30 changed the average

infNDCG by less than 1%. We thus used m = 30 terms in all experiments.

We empirically chose a convolution size of 5 (i.e., we consider 5 query terms at a time)

with nfilters = 50 and nrepresentation = 32. Substantially increasing the number of filters

(i.e., by more than 15%), the size of nrepresentation, or the dense layer harms performance by

causing the neural network to overfit quickly, whereas substantially decreasing them reduces

the network’s ability to fit the training data and also harms performance. While there are
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Original Note Clean note

Mr. [[PATIENT]] is an 80yo M with dementia, CAD status post
CABG in [[DATE]] (LIMA-LAD, SVG to OM2, SVG to RPDA),
then status post CABG redo in [[DATE]], then status post 2 caths
this year with patent LIMA, totally occluded SVG to RPDA, SVG
to OM2, status post BMS to LCX on [[DATE]] who presented to
[[HOSPITAL]] Hospital with increasing chest pain and nausea over
the past few days. Per report, patient has presented several times
since last cathed for recurrent angina. Admitted to [[HOSPITAL]]
on [[DATE]] with recurrent chest pain. Ruled out for MI. Last
episode of chest pressure was the morning of transfer, associated
with dry heaves and belching relieved with morphine. Patient was
continued on ASA, Plavix, Statin, BBker, Imdur and placed on
Heparin gtt. Cath last [[DATE]] here at [[HOSPITAL]] showed a
patent BMS in LCX and no new lesions. According to the family
he usually has angina once every day or two, but for the past 2
weeks he has been having angina with any minimal exertion (eg
putting on his shirt), and waking him several times per night.

A 80 yo male with demantia
and past medical history
of coronary artery bypass
graft surgery presented
with increasing chest pain
and nausea over the past
few days. The patient
has history of repeated
episodes of recurrent chest
pain with relief with
morphine. Patient is on
Aspirin, Statins, Imdur,
and Heparin. According to
the family, the patient has
increasing episodes of chest
pain with minimal exertion
in the last two weeks.

Figure 3.8: An example of noisy clinical note from the 2016 TREC CDS dataset
(left, red), and a “clean” version of the same note created by NLM residents at
the U.S. National Institute of Health (right, blue.) Text in monospace font represent
information that has been anonymized by TREC organizers.

many candidate terms to use as training data, the number of training queries is a limiting

factor; additional training queries would likely allow these parameters to be increased.

3.5 Clinical Decision Support with Noisy Queries

While CDS TREC 2014 and 2015 relied on fictional clinical descriptions created by health

experts, the TREC 2016 dataset [117] provided real clinical notes as search topics alongside

“clean” clinical descriptions. Compared with fictitious clinical descriptions, raw clinical notes

present additional challenges for existing CDS systems, due to “terse language and heavy

use of abbreviations and clinical jargon” [117]. An example of such raw clinical notes, as well

as its clean counterpart, is shown in Figure 3.8.
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In this section, we argue that query reduction techniques that address such challenges

ought to be studied, as they improve CDS search by enabling the use of real clinical notes

as queries. In particular, we propose a convolutional neural model that is able to predict, for

each term in the clinical note, its importance in relevant documents. To do so, it employs

several convolutional filters to learn local interactions between terms appearing in clinical

notes. Predicted importance is then used to weight terms at retrieval time. Our approach is

explained in detail in Section 3.5.1; then, in Section 3.5.2, we highlight the main differences

between the experimental setup for noisy clinical notes and the one described in Section 3.3;

finally, we evaluate our system on the TREC CDS dataset in Section 3.5.3.

3.5.1 Methodology

Similar to the work of Kumaran and Carvalho [78] and Bendersky, Metzler, and Croft [12],

the approach proposed in this dissertation is designed to predict, for each term in a clinical

note, a coefficient that encodes its importance. However, unlike these approaches, we do not

use heuristics to select informative query terms, nor we rely on feature engineering to train

our supervised method; rather, we use a convolutional neural network (CNN) to directly

estimate the importance of each query term by learning from terms in its proximity. Our

approach is described in Section 3.5.1.1.

We experimented with two different training strategies for our model. The first one

mimics the training strategy used for DNN (Section 3.2.3) in that it minimizes, for each

term in the training queries, the error between the importance weight predicted by the CNN

and its WRR value. The second one is most similar to supervised pairwise learning to rank

algorithms: given a query, a relevant document for the query, and a non-relevant document

for the query, we first use the CNN to determine the weights of terms in the query; then,

using these weights, we derive the scores of the two documents; finally, we backpropagate a

positive loss if the non-relevant document is scored higher than the relevant document. A

more detailed description of the learning strategy is provided in Section 3.5.1.2.
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Figure 3.9: Diagram of the proposed convolutional neural model (CNN). The
term being evaluated is “requiring”, while the context is “dropped slightly requiring blood
transfusion”. Dotted lines represent transformations for which batch normalization [64] and
dropout [136] are used.

3.5.1.1 Neural model topology

As previously mentioned, we used a CNN to capture local interactions between terms in

clinical notes. On a high level, our system includes several convolution filters of different

sizes to exploit interactions between terms in the proximity of each query term; the output

of the filters is then reduced to a dense vector, which we refer to as context representation

Ĉi. The context representation of each term is then concatenated with a term representation

vector x̂i and used to derive the importance value yi for each term in the query. A visual

overview of the system is presented in Figure 3.9.

Term representation x̂i

For each query q̃ = {q1, .., qn}, we first obtain its dense representation x = {x1, .., xn}.

Two source of evidence were used to obtain, for each term qi, its word embedding xi: GloVe
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vectors [108] pre-trained on the common crawl corpus20 and SkipGram vectors pre-trained on

PubMed21. We found that concatenating domain-specific with domain-agnostic embeddings

yielded the best results; this is consistent with findings in other neural clinical applications

[115]. We preserved the case of terms when obtaining word embeddings: this ensures that

medical abbreviations, which are often capitalized, are properly captured. In order to reduce

the dimensionality, the system learns a task dependent representation of the term feature

xi through a dense layer with ReLU activation function, which we denote as x̂i.

Context representation Ĉi

For each term qi in query ~q, we define the context of qi as the c terms preceding qi and the

c terms following it. In other words, the context of qi consists of the terms appearing in a

window of size 2c+ 1 centered in qi. For each query term qi, we stack the word embeddings

(obtained as described above under “term representation”) of the terms in its context to

obtain the context matrix Ci = {xi−c, .., xi, .., xi+c}. If less than c terms precede qi or less

than c terms follow it, we pad Ci with zeros in order to keep its size consistent with other

context matrices.

We chose to define context as the terms appearing in window around each query term,

rather than the entire clinical note, as we argue that terms in close proximity to each other

contain strong signals that can be used to estimate term relevance, while considering a larger

window would add unnecessary noise. Results supporting this observation are presented in

Section 3.5.4. Overall, the approach used to obtain a representation of the context of a

term was modeled after the architecture proposed by Severyn and Moschitti [122] to predict

similarity between short documents.

To obtain the context representation Ĉi, we use convolutional filters of size k = 2, 3, 4,

and 5, as proposed in [73]. This approach allows to capture local features with different

granularities. The convolution layer produces (c− 2bk/2c) features per filter per size (stride

20http://commoncrawl.org
21https://github.com/cambridgeltl/BioNLP-2016/
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size was kept at 1). We indicate the number of filters used for each size as h; we use the same

number of filters for each filter size. To reduce dimensionality, we transform each filter using

a max pooling layer of size k and stride bk/2c (i.e., from size 2 and stride 1 for k = 2 to size

5 and stride 2 for k = 5). Finally, after flattening and merging all filters, compact context

representation Ĉi,c is obtained through a dense layer with ReLU activation function.

We combine term representation x̂i and context representation Ĉi by concatenation

(Figure 3.9). The resulting layer is first encoded using an intermediate hidden layer with

ReLU activation function; then, the predicted importance value yi for term qi is obtained by

linearly combining the output of the hidden layer, as typically done for regression networks.

For simplicity, we will use the notation yθ(~q) = {y1, . . . , yn}> to indicate the vector of

predicted importance values for terms in ~q by the model with weights θ.

3.5.1.2 Learning strategies

Predicting WRR

Similarly to our DNN approach on clean clinical notes reformulation, we experimented

with training our CNN model to predict WRR of terms in the query. Note that, unlike

the model described in Section 3.2.3, we do not train on candidate terms; rather, we are

interested in predicting WRR for terms in the query. Furthermore, based on our experiments,

we determined that — unlike DNN— the CNN designed for this reduction task does not

benefit from the additional features described in Section 3.2.3.2.

Optimizing Document Ranking

In order to learn to predict the importance yi of each query term qi, we also experimented

with training our model in a pairwise learning to rank framework. In particular, given

triples 〈~q, ~d+, ~d−〉, where ~d+ is a relevant document for the query, and ~d− is a non-relevant

document for the query, we proceeded as follows: let Sim(~d, ~q) be a function that estimates

the similarity of document ~d with query ~q. Many similarity functions used in information
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retrieval (including BM25, which we used in our experiments), are linear with respect to

query term coefficients, i.e., they can be written as:

Sim(~d, ~q) = w(~d, ~q) · 1n (3.9)

where n is the length of query ~q, w(~d, ~q) is a vector of size 1× n whose elements are the

weight of each query term with respect to document ~d, and 1n is a all-ones vector of size

n× 1.

In the method we propose, the predicted importance values for terms in ~q are integrated

in the similarity function as follows:

Sim(~d, ~q) = w(~d, ~q) · yθ(~q) (3.10)

Leveraging this notation, we can finally define a pairwise max margin loss function with

respect to the training triple 〈~q, ~d+, ~d−〉 and model weights θ:

Lθ(~q, ~d+, ~d−) = max
(
0, 1− w( ~d−, ~q)yθ(~q) + w( ~d+, ~q)yθ(~q)

)
(3.11)

We combine the loss function defined in Equation 3.11 with a regularizing function

designed to prevent the model from assigning negative importance to query terms:

O(~q, ~d+, ~d−; θ) = Lθ(~q, ~d+, ~d−) +
∑

yi∈yθ(~q)min(0, yi)
2 (3.12)

We train the proposed model by minimizing this objective function.

3.5.2 Experimental Setup

3.5.2.1 Dataset

We studied the effectiveness of the proposed method on the 2016 TREC CDS dataset [117].

It is comprised of 30 topics (each containing a clinical note), 1.25 million articles from the

open access subset of PubMed Central, and 28,349 documents whose relevancy to topics
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Figure 3.10: Probability density function (PDF) of word relevance ratio (WRR)
of terms on the 2014 (blue dashes & dots), 2015 (green dashes), and 2016 (solid
red) datasets. Unedited clinical notes (2016 dataset) contain more non-relevant terms
(i.e., wrr < 1) than artificial reports (2014/2015 datasets). Since the distributions are
comparable, we augment the training set using the 2014 and 2015 datasets.

have been assessed. On average, clinical notes in this dataset have a length of 184 terms

and a median of 188; for each note, an average of 182 documents were found to be relevant

(median: 119). Note that this dataset is similar, but not identical to the ones used in previous

editions of the TREC CDS track we described in Section 3.3.2.

Because of the limited amount of training data proved by the 2016 TREC CDS dataset,

we expanded the training set using fictitious clinical descriptions from previous years’ col-

lections. Since these collections do not contain clinical notes, we use the fictitious clinical

descriptions instead. While descriptions are substantially shorter than actual clinical notes

(average length: 81 terms), the distribution of query terms that are likely to appear in rele-

vant documents is sufficiently similar to the one of query terms in the clinical notes dataset

(Figure 3.10); the likelihood of a query term being relevant was defined as the probability of

appearing in relevant documents for a query over the probability of appearing in non-relevant

documents for the query.
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3.5.2.2 Model Training

We partition the 2016 dataset in training, development, and test sets. The system was

evaluated under three-fold cross validation by rotating the subsets. For all three runs, the

training set was always expanded using the 2014 and 2015 TREC CDS datasets.

Optimal model topology was determined through empirical evaluation on the develop-

ment set. The size of the context and term representation layers was set to 128, while the

size of the hidden layer was set to 64. To prevent over-fitting, outputs of all layers (except

the last one) were regularized using batch normalization; batch size was set to 32. A 30%

dropout was also applied at training time to the input of all layers denoted by a dashed line

in Figure 3.9. As illustrated in Section 3.5.4, we experimented with several filter sizes k; the

number of filters per size was set to h = 256.

Both models were trained using the Adagrad optimizer [37]. For the model trained on

WRR, the number of epochs was fixed to 100. For the model trained on rank prediction,

each fold was trained until no improvement in infNDCG was achieved on the development

set for 30 epochs (at the end of training, the model was rolled back to the last iteration with

improvement). Using this heuristic, each fold model was trained, on average, for 105 epochs.

Both models were implemented using Tensorflow22 [1].

3.5.3 Results

In this section, we investigate the impact of the proposed method on the TREC CDS 2016

ad-hoc retrieval task. Performance was measured using the two main metrics of 2016 TREC

CDS track: inferred nDCG [164] (primary metric) and precision at 10 retrieved results

(P@10). The proposed method was compared with several well-known query reformulation

techniques, as well as the best approach from TREC CDS 2016. In detail, we compared the

proposed method with the following approaches (reported in Table 3.9; i to iv are baselines,

while v to ix are state-of-the-art techniques):

22https://www.tensorflow.org/
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Table 3.9: Performance of the proposed approach (x and xi), several baselines (i
to iv), and state of the art methods (v to xi) on the TREC CDS 2016 dataset.

Query reduction approach
TREC CDS 2016
infNDCG P@10

ba
se
lin

es

i No query reduction 0.1138* 0.1967*
ii idf filter 0.1242* 0.2067*
iii MMselect 0.1580* 0.2400*
iv HT 0.1670* 0.2300*

st
.o

f
th
e
ar
t v QQP [78] 0.1312* 0.2133

vi Fast QQP [132] 0.1520* 0.2433*
vii HTPRF [128] 0.1926* 0.2800†

viii PCW [12] 0.1833* 0.2900†

ix NKU [176] (best at CDS TREC 2016) 0.1978* 0.2900†

x CNN (trained on WRR prediction) 0.1896* 0.2700†

xi CNN (trained on document rank optimization) 0.2518 0.3167
Compared to the proposed method (ix ), results marked with * are significantly different
(paired Student t-test, Bonferroni-adjusted, p < 0.005). Resutls marked with † show large,
yet not statistically significant, differences with the best method (p < 0.05).

(i) No query reduction: we left the clinical note as-is, except removing numbers, stop

words, and units of measurement.

(ii) idf filter: we removed terms whose idf is less than 1 (term appears in more than

10% of the documents) and more than 5.5 (term appears in less than 3 documents

in the collection); values were determined through manual tuning on the development

set. Just like the previous method, we also removed numbers, stop words, and units of

measurement.

(iii) MMselect : similarly to the 2014 and 2015 TREC dataset, we tested the UMLS

method described in Section 3.3.3.1 on the 2016 dataset. Expressions in the clinical

notes were mapped to concepts in UMLS using QuickUMLS [126]; terms that are not

in UMLS were removed.
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Figure 3.11: Weights assigned by the CNN model trained on document rank
optimization to terms in the query shown in Figure 3.8. For the condition the patient
is suffering from (“recurrent angina”), the model is able to accurately predict important (e.g.,
“CABG”, an acronym for “coronary artery bypass graph”) and irrelevant (e.g., “dementia”)
medical terms for CDS search.

(iv) HT : we also consider the health terms filter introduced in Section 2.2.1.2 as baseline.

Furthermore, we compared the proposed method with several state of the art methods:

(v) QQP and Fast QQP : we evaluated the impact of the state of the art methods

described in Section 3.3.3.2; while these methods showed limited to no improvement

in on clean clinical notes, we include them in the evaluation due to the significant

differences in the CDS TREC 2016 dataset. This method uses quality predictors as

features to learn to rank sub-queries of clinical notes.

(vi) Parameterized concept weighting (PCW): we implemented the supervised model

introduced by Bendersky, Metzler, and Croft [12] to learn weights of concepts in the

query. This model uses statistical features (e.g., term and document frequency in target

collection) to learn the importance weight of three concept types: unigrams, bigrams

phrases, and proximity bigrams. We expanded the set of concept types with medical
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concepts extracted with QuickUMLS [126], and the set of features with term and

document frequencies of candidate concepts in several medical collections.

(vii) NKU team: we compared our system with the work of Zhang and Liu [176], which

obtained the best performance on clinical notes at TREC 2016. This method combines

concept extraction, query expansion using the MeSH23, and pseudo relevance feedback.

As shown in Table 3.9, the CNN approach trained on document rank optimization

(Table 3.9, line xi) outperformed all baselines and state-of-the-art methods. Compared to

the CNN trained on predicting WRR, it achieved an improvement of 27% in infNDCG. This

justifies the new training strategy over the one proposed for the 2014 and 2015 datasets.

The difference between the proposed CNN and the other methods’ performance is more

prominent in terms of inferred NDCG, as we observed an improvement of 121% over the

unmodified clinical note (line i), 37% over the best general domain query reduction (PCW,

line viii), and 27% over the best system proposed for this task (NKU, line ix ).

The proposed CNN showed a less pronounced improvement over state of the art methods

in terms of P@10; nevertheless, it outperforms all state of the art methods by at least 9%

(line ix ) and up to 30% (line v). We attribute this outcome to the fact that the proposed

method was trained to maximize the difference in scores between relevant and non-relevant

documents; thus, it suffers in precision-oriented metrics with early cutoff, such as P@10.

Finally, we observed that approaches that explicitly take advantage of domain specific

resources, such as medical concept extraction using UMLS (iii), HT (iv), and Fast QQP

(vi) outperform methods that do not leverage such resources (ii and v). This confirms the

finding of Balaneshin-kordan and Kotov [8] and Soldaini et al. [132].

3.5.4 Parameter Tuning

We studied the impact of the hyperparameters detailed in section 3.5.1.1 on performance of

the proposed method. In detail, we conducted two experiments: we evaluated the impact of
23https://www.nlm.nih.gov/mesh/
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Figure 3.12: Impact of context size on the best method’s performance.

context size c on infNDCG and P@10 (Figure 3.12), and we performed an ablation study to

quantify the impact of convolutional filter sizes (Table 3.10).

We experimented with context sizes ranging from c = 2 (that is, considering two terms

before and two terms after each query term) to using the entire clinical note as context

(c = ALL). As shown in Figure 3.12, the best performance is obtained when c = 10. While

the performance of the system is not affected by small deviations from the optimal value,

choosing a context that is too small (c 6 4) or too large (c > 15) notably reduced its

effectiveness. In particular, we note that the model that uses the entire clinical note as

context performed worse than any other context size c in terms of infNDCG, supporting our

decision to limit the context size.

Finally, we evaluated the impact of the convolutional filters size k using an ablation

study. The results presented in Table 3.10 suggest that using multiple values for k has

positive impact on capturing local features, as each filter size learn specific aspects of term

interaction in the context. However, we note that the improvement in performance got

smaller as larger filters were introduced in the model.
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Table 3.10: Ablation study on the size of convolutional filters.

Size(s) of convolutional filters used infNDCG P@10
k = 2 0.2342 0.2867

k = 2, 3 0.2435 0.3033
k = 2, 3, 4 0.2498 0.3100

k = 2,3,4,5 0.2518 0.3167

3.6 Conclusions

In this chapter, I studied whether expanding complex medical queries by latent medical

concepts improves the retrieval quality of medical literature. The problem was studied in

the context of clinical decision support (CDS) search, which is a search task intended to

help medical practitioners retrieve relevant publications to clinical case reports.

Two query reformulation approaches were introduced for this task. The first (HTPRF )

combines pseudo relevance feedback with a health term filter designed to remove non-health

related terms from the expansion candidates. The second method (DNN ) is a supervised

approach to query expansion that leverages a deep neural network to predict each candidate

term’s weighted relevance ratio, a measure of importance of each term in relevant documents.

To train the model, we use a combination of word embeddings, syntactical and semantic

features over the candidate terms, and statistical features derived from the distribution of

candidates and query terms in several auxiliary collections.

The proposed approaches was validated using two benchmarks: an artificial dataset

derived from USMLE prep book questions, and a manually annotated dataset that was

introduced in TREC 2014 and 2015. When compared to state of the art, the two systems fair

well, outperforming them up to 8% in infNDCG. Overall, DNN achieved better infNDCG,

while HTPRF obtained better P@10 performance.

Finally, a convolutional neural model to reduce noise in clinical notes was presented.

This method was designed to handle clinical notes that contain an abundance of medical and

clinical abbreviations, incomplete sentences, redundant or unnecessary information. For each
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term in a clinical note, the proposed approach takes advantage of the context surrounding

the term to predict its importance. The proposed approach was evaluated on the TREC

CDS 2016 dataset, and compared several query reduction baselines, as well as state of the

art methods, outperforming them all.
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Chapter 4

Conclusions

In this dissertation, I argued that both laypeople and experts suffer from language and

knowledge gaps when seeking health information. For laypeople, this is mostly due to limited

knowledge of the medical domain; for experts, this is due to lack of expertise in a specific

domain or limited time to invest in interacting with retrieval systems.

As evidenced by my scholarly work [27, 125, 126, 127, 128, 130, 131, 132], I have studied

how to quantify such gap in searches issued by laypeople (hypothesis 1.1 ), close the lan-

guage gap in health searches with query reformulation (hypothesis 1.2 ), utilize search results

reranking to promote documents that are semantically close to health queries (hypothesis

1.3 ), reformulate complex health queries to improve medical literature retrieval (hypothesis

2.1 ), and de-noise clinical notes, making them suitable for document retrieval (hypothesis

2.2 ).

The impact of the work put forward in this dissertation is two-fold: first, it introduces

a framework to quantify and close the knowledge gap laypeople experience when looking

for medical information online. As more and more individuals rely on the Internet to get

informed about their health, it is crucial to provide access to reliable websites that can

adequately satisfy their information needs. Given a query submitted by a lay user, the

work presented in Chapter 2 focuses on closing this gap either (i) by expanding the query

through query clarification or (ii) by re-ranking search results based on their semantic

similarity to the query. The former was proved effective at improving the success rate of

users in understanding health topics. In particular, results show that, when presented with

search results retrieved using clarified queries, users are up to 12.8% more likely to correctly
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answer a medical question related to the queries. The best result, achieved by a linear

classifier that automatically choose the best synonym mapping to clarify the query, confirms

that explicitly bridging the vocabulary gap by “translating” form lay vocabulary to expert

vocabulary is a simple, yet effective way to improve search outcomes. In Chapter 2, I also

showed that learning to rerank queries based on their semantic similarity is also an effective

approach to ameliorate the knowledge gap between lay searcher and medical content available

online. Experiments showed that a random forest regressor trained to predict query-result

similarity within a learning to rank framework achieved a 26.2% improvement over the

baseline, validating the proposed approach. Further feature analysis showed that features

designed to capture (i) the distribution of query and document terms in several health

collections, or (ii) semantic similarity between query and document are particularly effective

for this task. This suggest relevant pages for a query not only contain semantically related

terms, but also that the type of medical content in a page is an important indicator of

relevance.

This dissertation also presented several clinical decision support systems aimed at inte-

grating medical literature in clinical practice. The problem of bringing the latest findings

in clinical research to those who practice medicine has been long studied; research shows

that healthcare professionals struggle to keep up-to-date with current advances in clinical

research, and that this might lead to dangerous clinical errors due to misinformation. The

two solutions proposed in this manuscript — one supervised, the other unsupervised — effec-

tively address this problem by automatically reformulating clinical notes as queries, which

can then by used to retrieve relevant medical literature. The unsupervised method (HTPRF )

pairs pseudo relevance feedback with a statistical health term filter; the former is designed to

identify candidate for query expansion, while the latter removes terms that are not medical

concepts or medically-related terms. The supervised method (DNN ) leverages a convolu-

tional neural network to predict, for each expansion candidate, its importance in relevant

documents for the query; the model takes advantage of word embedding representations of
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the query and candidate terms, as well as statistical features designed to capture the use of

candidate terms across several medical and non-medical collections. When compared to state

of the art, the two systems fair well, outperforming them up to 8% in infNDCG. Overall,

DNN achieved better infNDCG, while HTPRF obtained better P@10 performance. The

latter is a particularly desirable characteristic, as it suggests that HTPRF could employed

to retrieve few, highly relevant papers that physicians could quickly consult during practice,

thus addressing limitation of current literature search systems.

Finally, I presented an improved version of DNN specifically designed to remove noisy

terms (i.e., medical and clinical abbreviations, incomplete sentences, redundant or unneces-

sary information) that are often present in clinical notes. Such noise is common in clinical

notes, and, as shown in Section 3.5, it negatively impacts performance of CDS search sys-

tems. The proposed approach is based on a convolutional neural network; it estimates, for

each term in a clinical note, its likelihood of being a noisy term. It is designed to optimize the

rank of relevant documents in the retrieved set for a given note. When compared with state

of the art query reformulation techniques for noisy clinical notes, it achieves an improvement

of 27% in inferred nDCG (+10% in P@10); it also outperforms the best domain-agnostic

query reduction techniques by 37% (+10% in P@10). This demonstrates that effective CDS

systems can be designed even for non-ideal clinical search environments.

4.1 Future Work

While the systems and methods put forward in this dissertation represent effective solutions

for closing the language and knowledge users suffer in medical information retrieval, they

could be further enhance through user modeling or semantic analysis.

For lay users, this work has proposed solutions to reduce the language gap by exploiting

the information need expressed in a query; however, further improvements could be achieved

by considering a model of the user who submitted it. For example, session information

could be leveraged to refine search results to only include documents that are consistent
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with previous medical searches; similarly, health-related information shared by users (for

example, through social media) could also represent an important signal to improve mod-

eling of their needs. Beside a user profile, which might contain sensitive personal informa-

tion, population-level statistics could be used to resolve ambiguous information needs (for

example, by providing information about diseases that are most likely in area where a user

is roughly located.) Approaches in this family would cause only a minimal compromise of

users’ privacy.

Clinical decision support search systems could be improved by considering methods

outside core information retrieval research. First, natural language processing techniques

could be applied to improve reduction of noisy clinical notes, either through semantic analysis

or summarization. However, in order to succeed these approaches will have to be coupled

with an increase in data annotated for the task. Alternatively, inference between symptoms,

diseases, and treatments could be applied to increase precision of CDS systems: semantic

relationships between medical concepts in clinical notes and retrieved literature could be used

to promote papers about affine conditions, and demote literature about unrelated topics. In

this case, sparseness of existing ontologies, particularly in terms of symptoms-disease and

disease-treatment relationships, ought to be addressed to create an effective system.
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