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ABSTRACT

STABILITY AND CUT POINTS OF PROBABILISTIC AUTOMATA

by Gerald M. Flachs

The concept of probabilistic automata has recently been the
object of much study by automata theorists. The behavior of a
probabilistic automaton is essentially characterized by products
of matrices selected from a given finite set of stochastic symbol
matrices. It is important in many applications that these matrix
products be stable with respect to small perturbations of the
entries in the symbol matrices. This thesis concerns three
different types of stability problems that arise when one considers
the effect of these small perturbations upon the behavior of the
probabilistic automaton. These are: 1) strict stability, denoted
""s -stability''; 2) tape acceptance stability, denoted ''a-stability'’;
3) zero stability, denoted '"0-stability’'.

Strict stability is concerned with the asymptotic behavior
of long products of stochastic matrices whose entries are subjected
to small perturbations. Necessary and sufficient conditions are
given for an arbitrary probabilistic automaton to be strictly stable.
An effective algorithm is given for deciding whether or not an
arbitrary autormaton is strictly stable.

Tape acceptance stability is concerned with the tape accep-
tance behavior when the entries in the symbol matrices are subjected

to small perturbations. Sufficient conditions are given for a-stability
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in terms of s-stability. Also, sufficient conditions are given for
a-stability that do not require s-stability. This result is essentially
a regional stability result that gives the size of perturbations allowed
without causing a-instability.

Zero stability, subject of the major contributions of this
thesis, is concerned with the strict stability problem when the
perturbations are not allowed to change the zero entry configurations
of the symbol matrices. Zero stability results are given in terms
of the cyclic structure of probabilistic automata. The fundamental
properties of the cyclic structure are developed and refined in
order to obtain some 0-stability results. Zero stability results
are also given in terms of the algebraic structure of probabilistic
automata, which is developed along definite algebraic lines. An
important class of probabilistic automata, called "zero-reset"
automata, and including group automata, is shown to be 0-stable.

Finally, isoclated cut-point problems are discussed using
two different approaches. In a set theoretic approach, a set of
response intervals is defined which contain the response points.

In a topological approach, a pseudo-closure operator is defined
that encloses the points which are not isolated cut points. Several
tests are given for solving these problems for a large class of

automata.
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I. INTRODUCTION

The concept of a probabilistic automaton has received a
great deal of attention due to its evident relationship with the
reliability of deterministic automata (Rabin[13}, 1963). More
recently, the study of neural nets and decision computers has
led to an even greater interest in the behavior of probabilistic
automata (Kilmer and McCulloch[lO], 1964). Essentially, the
behavior of a probabilistic automaton is characterized by
properties of products of stochastic matrices selected from a
finite set of symbol matrices, and subjected to special start
and stop conditions.

It is especially important in decision making, that the
behavior of the automaton be stable with respect to small
fluctuations in the entries of the symbol matrices. That is to
say, the behavior of the automaton should not change erratically
under small perturbations of the entries in the symbol matrices.
Chapter 2 and 3 pertain to this stability problem. Chapter 2
establishes the fundamental properties of stochastic matrices
and their products, while reviewing the known stability results.
The "strict" stability problem is solved, which allows any entry
in the symboel matrices to be perturbed. Chapter 3 is concerned
with the restricted zero stability problem, in which the zero
configurations in the symbol matrices are not allowed to be
perturbed. Zero stability results are given in terms of the cyclic

and algebraic structure of probabilistic automata.



Tape acceptance stability and equivalence of deterministic
and probabilistic autormata depend on the existence of an isolated
cut point (Rabin[13], 1963). Chapter 4 focuses on the existence of
igsolated cut points and on tests which decide whether or not a given
cut point is isolated. A bounded algorithm is given which decides

these problems for a large class of automata.

1.1. The Probabilistic Automaton Concept

Rabin, in 1963, gave the first neat definition of a probabilistic
automaton as a generalization of the usual deterministic automaton.
His formulation was essentially as follows. Let Xn be the set

of all (1 x n) stochastic vectors.

Definition 1.1,1,: A probabilistic automaton is a system

P = fa (S, )'}’L, ™ OF) defined over a finite alphabet Z = {u-l, Fsreees o’oz}
where °Z denotes the order of the set £ and
s = { 31+ 1 sees sn} is a finite set of states.
m is a {1 x n) stochastic row vector called the initial
distribution., Rabin, in 1963, used a single start
state instead of an initial distribution, The former
has been used in the most recent works of A, Paz,
C. Page, and others.
}}L = {M(u’i) Pos € =} is a finite set of n x n stochastic
matrices M(cri) that define, for each symbol ¢, in
the given set Z , a mapping from a distribution m e n

to a distribution « M(u’i) € 'jn . Thus ﬁz is a set of

mappings from n X Z to 0 Frequently M(u’i)



will be called a symbol matrix.
O is a {nx1}) column output vector with ones
corresponding to the designated final states

FCS and zeros elsewhere.

We denote by =* the set of all finite sequences of elements
from £ . We call these elements of = tapes, and we denote
EN and =N to be the set of tapes in =¥ whose lengths are N
and no larger than N respectively. The length q of the tape
X=0, 0, ...0 € =* ig denoted by lg{x). We also write
a‘z “ .q o. to denote the subtape of x that consists

Yetl P
of the kth symbol through the p symbol.

F"‘U

The function 77(: /fn x X -~ jn’ defined for symbols

o. € 2+, admits a natural extension to m: x =¥ - .
i n n
defined for tapes x = T, T ees O by the matrix product
1 2 q
T M(x) = Tl'M(O'i ) M(U’i } e M(cri ). Here the null tape A

1 2 q

{lg(A) = 0) is represented by the identity matrix M(A) =
and the mapping w I =m .

The behavior of probabilistic automata can be viewed as
a stimulus-response relation for a mathematical machine, This
point of view is particularly important in the application of
probabilistic automata to animal and antefactual decision behavior.
The response of a probabilistic automaton 70 to a sequence of

stimuli, x=¢, ¢ ... o, , is defined by
B B "k

rp(x) = ™ M(O'il) M(O'iz) - M(o’ik) OF .
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The response rp(x) of p to a tape x is the probability of
entering into a final state upon the application of tape x to
when p is started with the initial distribution U We shall
often refer to rp{x) as a ''response point"’. Thus we see that
the response of a probabilistic automaton is characterized by
products of stochastic matrices selected from the symbol matrices
together with special start and stop conditions, T and OF
respectively.

The tape acceptance behavior of a probabilistic automatoen
is defined in terms of a cut point 0 <A < 1. For a given cut

point A, the system (/0, A ) is said to accept the set of tapes

f. r),
(AP \) = {x:xeZ* rp(x) > \}

and reject the rest, all with respect to the cut point A . A cut
point A is said to be isoclated if, for every x € Z% and some

Y > 0, either rpi(x)> X +y or rp(x)< X -y,

Definition 1.1.2.: A cut point 0 < X €1 is called isolated i1ff for

aome fixed y > 0, | rp (x) -?\| > y forall xe Z*. We shall
often refer to a y -isclated cut point to signify that we have a
particular fixed y in mind.

Rabin showed that probabilistic automata with isclated cut
points accept only those sets of tapes that are definable by finite
state deterministic automata. Thus probabilistic automata with
isclated cut points have the sarme tape discrimination power as

finite state deterministic automata. A probabilistic automaton,



however, may have vastly fewer states than any corresponding

deterministic automaton accepting the same set of tapes.



II. GENERAL STABILITY PROBLEM

This chapter launches our attack on the stability problem
and dfers a review of the known stability results. We discuss
three different types of stability that are of interest in probabilistic
automata theory., The first type, defined without reference to a
cut point, is strictly concerned with the asymptotic behavior of
long products of stochastic matrices. The second type, defined
in terms of a cut point, is concerned with the tape acceptance
behavior of probabilistic automata. The third type, called zero
stability and discussed in chapter three, concerns the asymptotic
behavior of long products of stochastic matrices whose entries
are subjected to perturbations which do not alter any matrix
zero configuration. We shall define these stability concepts

precisely below,

2.1, Stability Concepts

The stability concepts introduced here pertain to the Rabin
probabilistic automaton p{S,m, L OF) defined in Section 1.1.
Stability problems arise when one considers the behavior of a
probabilistic automaton under small perturbations of the entries
in its symbol matrices M(o‘i), € Z ., Only those perturbations
which leave the perturbed symbol matrices stochastic are allowed.
We shall denote the perturbation of P(S. )92, T o OF) by
Pus, M, =, Op). That is, P isa system }Ql(s, . T, Op)

in which the entries of each symbol matrix M'(cri], T, € z,



are formed by perturbing the entries of M(c’i), ¢ € z, by
arbitrary small quantities that leave the row sums one,
Let | BI denote the absolute value of the

maximum entry in B.

Definition 2.1.1.: An automaton P(s,)’}z, w_, Op) is strictly

stable {denoted s-stable) iff given any € > 0 there exists

6(€) > 0 such that the inequalities
- M <
|M(0'i) M(c‘i)l 5 W reZX
imply

| M(x) - M'(x)] < ¢ ¥V xe T*

Definition 2,1, 2.: An automaton fo(s,f)t » T OF) with cut point
X is tape-acceptance stable (denoted a-stable) iff there exists a

§ > 0 such that the inequalities
| M(s.) - M'(cri)] < & ¥ o€l
imply

Py = TP N

In other words, a probabilistic automaton with cut point
A is a-stable if its accepted tape set is not changed by sufficiently

emall perturbations of its symbol matrices.

Definition 2.1.3.: An automaton p(S, m. e OF} is zero
stable (denoted o-stable)iff given any € > 0 there exists a

§{e} > 0 such that the two conditions

1) |M(U'i)-M'(cr.1)| <6, o cZ,



2) no perturbation is allowed to change the
zero entry configuration in any M(c’i), T, € z,

imply the inequalities
| M(x) - M'(x}| < € ¥ xe ¥,

The following simple example illustrates these concepts

by showing the difference between o-stability and s-stability.

Example 2.1.1.: We consider an automaton that is, 1) o-stable,

2} not s-stable, and 3) for 0 € X\ < 1/2 not a-stable. Define
P(S,m, Sy SZ) with cut point 0 < X < 1/2 over the single

symbol alphabet Z = {0} . Let the state set be 5 = {sl, SZ} .

and let
1 2
1 1 0
M(0) = .
5, 0 1

1) First note that pis o-stable, since )ﬂ = }p when
no zero entries are altered.

2) Next, we shall prove that p is s-unstable. We show
that a perturbation for which 0 < & < 1 will introduce a significant

change in the asymptotic behavior of Mk(O}'. Consider the perturbed

system p' with transition matrix

1 92
sy |1-6 5
M'(0) =
5 1-5
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where 0< 6 < 1. For the rape x = Ok € £ , the perturbed matrix

product is

M'(x) = M'(05) =

The matrix M' Q) can be written in terms of its constituent matrices

as
M'{0) = U1 + (1 - ZB)UZ
where
1 17] 1 17
2 3 2 “ 2
U, = and U, =
1 1 1 1
2 Z "2 2

= U, and UIUZ = 0, we see by induction that

Mi{0%) = U+l -2 5%, .

Now (1 -2 6)k — 0 as k increases: thus, given any positive

A

€ lz there exists a finite initeger K{6,€} (any integer
K > e/6{1 -2¢} will do) such thaz:

K

| Mo™) - Mm%y = ULl (1 - - 265
(2.1.1)
- sl -2 >

Hence it follows that 7ﬂ is s-unstable.
3) Finally, for any cut point X\, 0 < A < ;— we have

T{ p, A= ¢ . The set T{fa',?\) is not null, however, since
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given any 6 > 0 there exists by equation (2.1.,1) a finite integer
K(6,X) such that rp ,(OK) > A and rIP(OK) =0< X . Hence

f

‘P is a-unstable.

2.2. Stochastic Matrices and Their Products
In this section, we summarize some fundamental results

concerning stochastic matrices and their products,

Definition 2.2.1.: The {(nx 1} column vector with all 1 entries

is denoted 1_ and called the "summing vector."

Definition 2.2.2.: A square matrix A is a stochastic matrix iff

it has nonnegative entries and umt row sums.

¢ The nonnegative {positive) entry condition is written
A>0(A >0},

e The unit row sum condition is writien A Is = IS

Lemma 2.2.1.: If A and B are two (n xn) stochastic matrices,

then the product C = AB is again a stochastic matrix.

Proof: The nonnegarive corditions A >0 and B >0 imply

n
C = > >
LTS YLk Py 20 200

The unit row sum conditions AIS = 1S and BIS = I5 imply

C-I = A(BILl) = A1l =1
s 5 5 s

Lemma 2.2.2.: The eigenvalues ?\1 of a {r xn) stochastic matrix

A satisfy Ixil < 1.
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Proof: If X 1is any eigenvalue of A with corresponding eigenvector
x then Ax = Akx . Let X; be the component of the largest modulus

of x. Now consider the modulus of the it.h row of Ax = Ax,

n
a, .x.| < ~ a, |xl = lxl .
L% — =1 L i i

M=

gl = |

o

j_—.
which implies | x| < 1.

Lemma 2,2.3.: Any (n xn) stochastic matrix A has at least one

unit eigenvalue with corresponding eigenvector Is .
This result is an immediate consequence of the unit row

sum condition, A Is = IS

Definition 2.2.3.: An {(n x n) stochastic matrix A is scrambling

iff A AT > 0. Equivalently, a stochastic matrix A is scrambling

iff every pair of rows {i,r) of A has a corresponding column j

such that a. ,» 0 and a .> 0.
i, j r

’ lJ

Let || C|| denote the maximum difference

|c. . -c¢ J[ for all i, r, j.

Theorem 2.2.1.: (Equivalent to a theorem of Paz [12]). If A and

B are {n x n) stochastic scrambling matrices, then || A || <(l -a

where a_in 18 the minimal nonzero entry in A .

Proof: For an arbitrary fixed j,let i and r be the integers that
represent the particular two rows of A that generate the jth column

norm ” (A B) J” . Then we have

min



las -

=|§(a.—

k=1 L,k ar,k)b

K,

Let K and K be the sets of irdices k such that a2 Al and

ai,k < ar,k respectively., Define
=t = D (B 2, 20 and ZTs —kfiff (a, | -2, }20
The unit row sum cornditior implies that
=t = z-
The quarntity =% satisfies the coendition
zt = @K Gk 2kt T Bk Pk -kff{_ I T

since the scrambling condition insures that at least one term within

the surms must te positive. Finally, we conclude that

A - B} | = z . - b .+~ Z . - b, .
”( I.,:” |k€K (azpk ary k) k?} k&K(al,k ar) k) k!.Jl
i | z (3’4 r TR kaiqax - E—-iar k ~ ai k.} bininl
vk nE TR TmaEx G gl e
_ + s X )
- |Z "meax z Tm :'_i

< z-gsff < -2 b ||B]

This completes the precof.
The stronger inejuality |[A - B| < A - ||B|| might be

conjectured, but is nct szaticiied by the twc maztrices
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11 1 7 7]
vy > vy 0 rl 0 8] 0
1 1 1
0 - = - 1 0 0] 0
A - iz 3 5.
1 1 1 3 1
i z 1 © i 3 0 0
1 1 1 3 1
1 7 z 1] 'z 3 0 0

Lemma 2.2.4.: If A is an {n x n} stochastic matrix and B is any

(n x n) matrix, then |AB - B| < || Bl .

Proof: We let 3 be an (n x 1) column vector defined as BT =

(Bys» Bpe---+B,) and show that |AB - B| <|B] . Let i denotea
row which yields |Af - B|, the largest absolute value among the

entries of AP - B . Then we see that

n n 3
|AB -B| = |k§1 ai.kﬁk'pi| - |k§l ai.kﬁk'ﬁikflaisk‘
n n
= R i U R L R LT
It
< el 2y 2% = MRl

Since the column vector p c¢an be chosen at will, we conclude that

|aB - B| < |[B] .

Lemma 2.2.5,: A (nxn] scrambling stochastic matrix A has

exactly one eigenvalue with unit modulus; )‘l = 1.

Proof: Since A is scrambling, we know by Theorem 2, 2.1 that
||J°Lm h<(l-a_. y" where a_. is the smallest nonzero entry in
- min min
A. Thus _Mm |]Am|| =0 and hence U, = lim A™ is a stochastic
=+ 1 m—+o

idempotent matrix with identical rows, Consegquently, the only
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nonzero eigenvalue of Ul is .\1 = 1. Thke eigenvalues of A are

?\i ({i=z1,2,...,n) where )\i are the eigenvalues of A. Thus, A
has precisely one eigenvalue with urit modulus.
This result can be strengtherned by introducing a more liberal
scrambling condition.
Wolfowitz [16] proved that if A is scrambling,

® soare AB and BA, for stochastic matrices

A, B.

Definition 2. 2. 4.: A (nxr} stcclas*ic matrix is said to be eventually

scrambling {denoted e=scrambiing) ¥f there exists an integer e such

that A% isa scramblirg matrix.

Theorem 2.2.2.: A (n xn} stochezetic matrix A is e-scrambling

iff A has precisely one eigenvzlue, ?kl = 1, with unit modulus,

Proof: a) If A is e-sirambling, then by Theozem 2. 2.1, it follows
that limm I AT | = ¢. Arguments similar to those used in Lemma
m—'

2,2,5 prove that A has precisely one unit modulus eigenvalue,

?\1 =]
b} If A has only cne unit mcdidus elgenvalue, ?\1 =1, then
])\i | <1 for 1i=2, 3, ..., . Tris ‘mglies tkat the stochastic
idempoteat U, = limm A™ has only cre unit eigenvalue and (n - 1)
m—h

zero eigenvalues. Thus U1 fzs rank 1. We chbserve that any

stochastic matrix with two rnon-identicial rowes has rank at least two.

Consequently, Ul = Is . uT kas identical rcws uT and lirnm " Am” =0,
m—b

This implies that A is e-scramkbkling, since there exists a bound B

(namely n} such that if AT is scrambling for any m > B, then
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AB is also scrambling.

Definition 2. 2. 5.: A square matrix A, labeled by states, is said to

be reducible iff there exists a relabeling of the states so that the

rearranged matrix Ar has the form

where Pr is a square matrix, Otherwise A is called irreducible.

Definition 2. 2. 6.: A square matrix A is said to be partially

v-decomposable iff there exists a relabeling of the states so that

the rearranged matrix Ar has the block form

Csloh g g v
S(O} Tr Q(l) Q(z‘) L. Q(V)
(1) pl1)
5(2)

A =
r
s{v) p{v)
where P(i) (i=1, 2, ..., v) are square matrices. If the set

S(o) is null, then the matrix A is said to be v-decompesable,

Theorem 2.2.3.: (Perron-Froberius) If A is any nonnegative

irreducible square matrix, then:

1) there exists a real positive eigenvalue Ny of A such

that, if X 1is any other eigenvalue of A then
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A < }‘1 ;

2} minimal row sum <X\, < maximal row sum, where neither
equality holds urless the row sums of A are equal;

3} there exists a real positive eigenvector Xl > 0 such that
A Xl = ?\1 Xl ;

4) }‘1 increases when any entry in A increases; and

5} Rl is a simple rcot.

This result was also poved by G.Ddbrew and I[. N. Herstein [ 6 ]

using Brouwer's fixed point theorem. However, their proof does not

give a constructive method for determining )\l .

Proof;: We shall first prove parts 1}, 2), 3}, and 4} by showing that

there exists a sequence of diagenal similarity transformations whose
limit transforms A into a matrix with equal positive row sums.
The approach taken gives a constructure procedure for determining

A The essential features of the approach can be clarified by means

1"
of a simple example.

Example: Consider the ncnregative irreducible matrix A:

3 4 0 7
A = 0 0 5 ) AIs =i 5
3 4 4 11

We shall apply successive diagonal similazity transiormations
that medify the rows with maximal or minimal row sum, so as to
increase the minimal row sum and/or decrease the maximal row

sum. First, since the tkird row has the maximum row sum 11,
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we transform A by a diagoral matrix D1 = diag {1, 1, dl]' and

obtain
3 4 0
-1
Al = D1 A Dl = 4] 0 Sdl
3/dl 4/d1 4

We now choose d1 > C to satisfiy the inequalities

5< 5d, < 11 y or 1<d < 11/5

5 < 4+?/d1<.11, er 1<d, <7
s0 as to obtiin a2 smuller maximum row sum. We choose d1 =2,

whence
(Row Sum)

3 4 0 (7
A =[O 0 10 (10)
3/2 2 4 (7.5,

Next, we transform AI oy a diagoral matrix

D, = diag {1, d,, 1} ard ot*azin

2
3 44, 0

A, = Dz‘lﬁ D, = [0 0 10/d,
3/2 24, 4

We now choose d, > 0 tc satisfy the inequzlities
[

7 < 3+4d2<10

< 10

9]
L]

1 < d, < 7/4

7 < 10/d 1 <d, < 10/4

4]
¥

2
7<5.5+2d, < 1¢C or 3/4 < d, < 9/4
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so as to obtzin a smaller maxmum zow sum, With the judicious choice

d2 =5/4, we get a similar matrix Az with equal row sums.

3 5 0 (3
Ay=1|0 0 8 (8)
3/2 5/2 4 (8)

Consequently, A has a positive real eigenvalue ?\l = 8. Clearly, the
matrix (1/8)1’-’&2 is stochastic. If X 1is any other eigenvalue of AZ

with eigenvector Y then AZ Y=x Y. Dividing by X, =8 we get

1
(1/8)A2 Y=(\/8)Y. By Lemma 2. 2.2, the modulus of ény_ eigenvalue
of a stochastic matrix cannot ex:eed one. Corsequently, [7\ ]_<_ 8 for
any eigenvalue » of A.

We now return to the proof of the theoremn at hand. First, we

establish a sequence of diagonal similarity transfermations,

D.-1 A D = A ii=0,1,...) where A =4, =o that
i i1 i+l o]

}}fg “Ai Is” =+ 0. We shall zlternately operate or the maximal and
minimal rcw sums, Thuas for 1 even (I odd} we will operate on
the maximezl (mirimesal} row s.ms. Denote the rews with maximal,
intermediate, and mirimeszl rov: sums oy K*, K° aird K~ respectively,

-

Define the diagenal mzirices D. = dlag {dg-";}

for 1 even as

dJ(.” = d > 1 if jeK

o
d‘f') 1 ctrerwise , and
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for 1 odd as

0 < dgl} =@ <1 if jeK

at!
j

H
Yt

otkerwise.

Now to prove that at each step di. > 0 can be chosen so that

lim (A, I_|| = 0, we note that at each step the matrix pla D =A,
i~ 1 s 1711 i+l
can be relabeled so0 that the relakteled matrix Ai.+l has the form

for 1 ever:

K' K° K~
’ A9 (i/di}Aiz (I/di)Al?;
Al = K° | da, Az2 Azs and,
T %A A A3z
for i odd:
K" K" K"
k[ a A aA. . |
11 12 i™*13
ALy = KT| Ay £33 4423
KN/ 4 Ay (1/¢3A,, Ay,
o -

The irreducitle condition implies {c: ever it that d.1 > 0 can be chosen
so that; 1) at least ore ¢f the maximal row sams will he decreased,

2} at least one cf the row sums in K° U K~ will be increased.
Similarily, for i odd we can chocse ::11 > 0 so that; 1) at least one

of the minimal row sums will be increased, 2) at least one or the

row sums in K+ U K° will be decrezsed. Corsequently, as the



1o
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process is repeated, all the row sums will tend toward a common
positive row sum 1\1 . The quantity )‘1 lies between the minimal

and maximal row sums, but is equal to either only when both are

equal.
Consider a sequence of diagonal similarity traneformations
such that
. -1
13_13;1 [tb,D; D, ... D }" A(D_D, D,... D)L
= Iptapr| = o
8
1

This simply states that the row sums of Q=D A D have equal

values )Ll . Thus, this matrix Q similar to A satisfies

QI =) I, so \ isan eigenvalueof A. Now (l/kl) Q is

a stochastic matrix. If A is any other eigenvalue of Q with
eigenvector Y then Q Y =X Y. Dividing by )\1 we get

(l/ll) QY= ()L/kl) Y. By Lemma 2.2.2, the modulus of any
eigenvalue of a stochastic matrix can not exceed one. Consequently,

I <A, for any eigenvalue A of A.

1

To prove that there exists a positive eigenvector corresponding
to Xl , Wwe note that D-1 AD IEl = kl Is where D > 0. Consequently

Xl =D Is > 0 is a positive eigenvector of A corresponding to )\1 .
To prove that kl increases when any element in A is

increased, one needs only to observe that a row sum of D-1 AD

increases when any entry in A increases. This completes the
proof of partas 1}, 2), 3), and 4).

To prove that A\, is a simple root of D(A} = det [IN - A] note

1
by [7]} that D!'(\) = tr(B(\)) where B(\) denotes the adjoint of (I\ - A).
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Let C, be the (n - 1) x (n - 1) submatrix obtained from A by deleting
the ith row and cclumn, Then we know from the adjoint definition

that

DN} =tr (B(A)}) = 'gl det (A I - Ci}
i=

By 4} it is clear that det (A1l - Ci) >0 for X >X Consequently,

1"

D'(x) > 0 for X > x, which proves \, is a simple root of

1 1
det {IX - A). This completes the proof of the theorem.
The next theorem shows the relationship between the number

of unit eigenvalues and the structure of a stochastic matrix,

Theorem 2.2.4.: A (n xn) stochastic matrix A has v unit eigen-

values iff A is partially v-decomposable.

Proof: a) (Sufficiency) We prove that if A has v unit eigenvalues
then A is partially v-decomposable. First, we perform a suitable
relabeling of the states such that A has the block upper triangular

form
—
All AIZ . . A]n

A = AZZ . . AZn

A

L nn !
-

where the square matrices Aii are irreducible., Clearly any

eigenvalue of A must be an eigenvalue of some A.. and vice-versa.
Conclusion 4 of Theorem 2. 2. 3 proves that, if Aii has a unit

modulus eigenvalue, then Aij =0 for 3=1i+1, ..., nn, since the
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eigenvalues of any s*cchastic matrices have modulus no larger than
one. Consequently, Aii 1s a stochastic irredaicible matrix with
only one unit eigenvalue, Thus, if A has v-unit eigenvalues, then
A is partially v-decomposable,
b} The proof of necessity tollows trivially from Lemma 2. 2. 3.
This result can be extended tc nonnegative square matrices
with row sums no larger than one., Such matrices we shall call

substechastic,

Theorem 2.2.5.: A {n xn} substochastic matrix A has v unit

eigenvalues iff A is partially v-decomposable.
The proof follows immediately from Thecrem 2.2, 4, by
observing that a substochastic matrix A can be imbedded into a

A
stochastic matrix A by adjoining one additional state as shown below:

=

>
I
S

where the d's are chosen to praduce unit row sums.

2. 3. Strict Stability
The results obtained in this section are sufficient to solve

the strict stability problem fer an arbitrary probabilistic automaton.
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We shall prove that the quasi-definite condition is both necessary and
sufficient for strict stability. An efficient algorithm will be given in
Chapter 3 to decide whether or not a given probabilistic automaton is
quapi-definite. First the quasi-definite condition is defined as a

non-trivial generalization of Rabin's actual automaton.

Definition 2. 3. 1.: A probabilistic automaton ?O(S. )7?_. Mo OF) is

called ﬂ@l_iﬁ the symbol matrices M(iri), g, € Z contain no
zero entries.

Rabin proved that all actual probabilistic automata have the
property that given any € > 0 there exists an integer N{e) such
that the inequality lg{x) > N, x ¢ ¥, implies |M(x)| < € .

This result follows immediately from Theorem 2. 2,1, since the
actual condition clearly implies that all the symbol matrices are
scrambling. A class of autorata that includes these actual automata

will be called quasi-definite automata, following A. Paz.

Definition 2. 3. 2.: A probabilistic automaton ,0 (s.))z » e Op)

is called quasi-definite iff given € > 0, there exists an integer N{¢)

such that the inequality 1g(x) > N, x € =¥ , implies IM(x}] < € .

Theorem 2. 3.1.: A probabilistic automaton }0(5, )')'L, LI OF) is

s-stable iff it is quasi-definite.

Proof: a) (Sufficiency) We shall prove, for any tape x € z* , that
|M(x) - M'(x)| < € if the perturbations of the symbcl matrices are
made sufficiently small. If IO is quasi-definite, there exists an

integer N(€)} such that lg{(x) > N, x ¢ z* implies || M{(x) | < /4.
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We now consider any tape x € > ¥ lg'x) <N, then we clearly can
choose our perturbations sufficiently small that lg{x) < N implies

| M{x) - M'(x}]| < €/8 < €. If lg{x} > N, then we partition x so that
X = yz
where lg(z) = N. Now consider

|M(x) - M'{x}| lM(y)M{z} - M'(y)M'(z)I

from which we get

| M{x} - M'(x;| | (M(y) M(z} - M({z)}
- (M'(yIM'(2z) - M'(2)) + M(z) - M'{z))|
by adding and subtracting terms. The triangle inequality yields
|M{x) - M'{x)| < |M(y)M(z) - M{z}| + |[M'{y)M'(z) - M'(z}|
+ | M{z) - M'{z}|

Applying Lemma 2. 2. 4, we get

| M{x} - M'Y{x}| < [[M(2}] + | M'(z)]| + |M(z}) - M'(2)]
We note that

M2 < MGz |+ 2] Me2) - M) |

by observing the entry in M(z) whichk prcduces |[M(z)| . Hence, we

conclude that there exist sufficiently <mall perturbations to imply
|M(x) - M{x)| < €/4+e/2+€¢/8 = 7/8Be< e

for all x € Z¥ . This completes the sufficiency portion of the proof,
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b) {Necessity) We now show that if '0 is not quasi-definite,
then /0 ig s~-unstable, If P is not quasi-definite, there exists a
fixed y > 0 and an unbounded sequence of tapes {xi} where
lg(xi) > i such that for all i, | M(xi) | > ¥y. Clearly we can
perturb /0 with arbitrarily small nonzerc quantities so that the
perturbed system p' is quasi-definite. This implies that for
€ > 0 there exists an integer N{e¢) such that the condition
lg{x} > N, x ¢ T implies “ M'(x)“ < € . Hence ilil:ol I M'(xi) I =0,
and consequently 11_1.1;1 | M{x) - M'(x.}| > v/2, so p is s-unstable.
Paz introduced a necessary and sufficient condition for

quasi-definite automata by his H,-condition, decidable by a bounded

4

experiment.

Definition 2. 3, 3.: A probabilistic automaton is said to satisfy the

H4-condition iff there exists an integer k such that lg(x}) >k, x ¢ =%,

implies that M(x} is scrambling.

Theorem 2, 3,2.: A probabilistic automaton is quasi-definite iff it

satisfies the I—I4-condition.

E_r_o_c_u_f_: a) (Necessity) If a probabilistic automaton is quasi-definite
then for € > 0 there exists an integer N(e) such that |M(x}| < €
for all x € =¥ with 1g(x) > N. This simply means that the rows of
M(x} become nearly identical whenever lg(x) > N, which in turn
clearly implies the scrambling condition.

b) (Sufficiency) If a probabilistic automaton satisfies the
H4-condition, then there exists an integer N such that lg(x) > N

implies M(x)} is scrambling. Define y > 0 to be the minimal
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nonzero entry in {M(y)| V€ EN} . Now select the minimal integer
B such that (1 - y)B < €. Let x be any tape in =¥ with

lg(x) > BN . Partition x into "prime" scrambling tapes z, such
that the matrices M(zi) are scrambling and no 2, has a scrambling

subtape;

X = 2y Zy2%y... 2, {n > B).

The H4-condition insures that 1g(z.1) < N. Now apply Theorem 2. 2.1

on the subtapes z, to get

M < -y < -vP < e

Paz proved [14] that the H,-condition can be decided with a

4
bounded experiment, This result will be obtained easily from the
cyclic structure developed in the next chapter. Also, at that time,

an efficient algorithm will be given to decide the quasi-definite

condition.

2.4, Acceptance Stability

We shall give here sorne sufficient conditions for tape
acceptance stability expressed in terms of an isolated cut point,
A cut point A is y-isolated if the response of tape x satisfies
|rp(x} - X | > ¥y >0 forall x¢ =* . The a-stability differs
from s-stability by the fact that a-stability will tolerate the
instability of the response points as long as they do not cross
the cut point, but will not tolerate the crossing of the cut point by

a response point.
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Theorem 2.4, 1,: If an automaton p is s-stable and X is an isolated

cut point, then the system (p. A) is a-stable,

Proof: Let A be a y-isolated cut point, i.e., |[rp{x) - x| > y for all
xe Z¥ | By Theorem 2.3.1, for € > 0 we can choose the perturbations
sufficiently small so that |M(x) - M'(x)| < € = y/n where n is the
number of states in p . Let x be any tape in Z%* and consider the

change in the acceptance resulting from these perturbations:

|rp{x] - rp'{x)| |'|'ro M(x) OF - M'(X)OF|

]wO(M(x) - MY{x)) O <ne=y.

Fl

This proves that x € T(P,?\) — X € T(‘p', ») since no response
point can cross the y-isolated cut point \ .
Our next result is a regional stability theorem that does not
require the automaton to be strictly stable in order to be a-stable.
That is to say, we will tolerate instability of response points as long
as they do not cross the cut point, Let us consider a probabilistic
automaton P (s, nl_, T OFJ defined over the alphabet = ={1,2,..., °2} and
s=1{1,2, ..., bS} where F € 5 represents the set of designated
final states, and 0., the column vector with entries 1 for the final

F

states and 0 elsewhere. Define the response intervals, Ri’ as

R.=[ =z a', =z ¢ 0, 1 2.4.1
i [jeF j jeFvJ]n[ ] ( )

for each ie £ where

i . .
Aj m}tn { M(l)k, j}

and

<.
It

5 mzx { M(i)k'j}
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Theorem 2.4.2.: A prebabilistic automaton P(S, n, wo,Ol;'J with

cut point A is a-stable if X\ £ 'UE Ri for perturbations less than
le

6,

6 = min {|x -Ril} /OF

Proof: Let x be any tape in =* written in factored form x = y k
where ke £ is the last symbol of tape x. Consider the unperturbed

and perturbed responses of the automaton to the tape x,

rp(x) = LN My} M(k) 0F {(unperturbed)
and
rp'(x) = LIS M (y) M'(k) 0F (perturbed) .
Let p = [p1 P, .- pn] and q = [q1 9, .- qn] be two stochastic

row vectors. Now if & is the maximum perturbation allowed, i.e.,

| M(1) - M'(i)| < & for all i€ Z , then we have

Kk k
Tz A g[p1 P, --- P M(k) 0. < Z V.

jeF 3 jeF
and
zAk-a-"Fc[ql 4 ---a) M(KO_< Z VE+s-%F .
jeF ) = n F=jer

Consequently, if the cut point X ¢ U Ri then no response point will
i€l
cross the cut point for perturbations less than

5 - min R-R‘} °p
i {1 Ay 7

We now give a simple example to illustrate how this result can
be used to yield a-stability results when the automaton is not quasi-

definite.
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Example: Consider an automaton 10 with cut point A =1/2
defined over the alphabet Z = {1, 2} and state set S= {1, 2, 3, 4}
where 8, F 1 is the initial state and F = {1, 4} are the designated

final states. The given transition matrices are

1 2 3 4 1 2 3
1 [ o 1 0 0] 1 lg 0 0
2 -;— % 0o 0 2 | o lg 0

M(1) = M(2) = . X
3 0 0 1 0 3 {15 ©° 1%
4 o o %- 15- 4 o o o

The response intervals Ri are given by (2.4.1) as

R1=[0.%]. R=[§.1] .

Now X\ =IE £ [o, %] U[i, 1] . Thus, the theorem implies /9

is a-stable for all perturbations less than 6 = % .

= (b IR OO R




III. ZERO STABILITY PROBLEM

The o-stability problem comes up when one considers the
stability of probabilistic automata subjected to small perturbations
of the nonzero entries of the symbol matrices. The o-stability
problem arises only in nonquasi-definite automata, henceforth
denoted NQD automata, since quasi-definite automata are s-stable
even under perturbations of zero entries {Theorem 2,.3.1). Rabin
conjectured that all NQD automata were o-stable, but H. Kesten
produced a neat counter example. A slight modification of this

example is given below to initiate ocur study of the problem.

Kesten's Counter Example

Define the NQD probabilistic automaton K(S, % , 8 32)
over the alphabet Z = {0, 1} and on the state set § = {Sl’ Sy

53, 54} by the transition matrices,

Sl SZ 53 34 51 SZ 33
- _
s, [p 1-p 0 0 $) |'0 0 1
s, |0 1 0 0 s, |1 0 0
M(0) = s, [0 0 q 1-q | M= Ll 0 o
Sy _0 0 0 1 ] S4 LO 0 1

_ -
pn l-pn 0 0
0 1 0 0
Mo™) = M®(0) = . N
0 0 q 1-q
0 0 0 1
[ —

30
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and
r— -
1-p% 0 p" 0
n n 1 0 0 0
M(071) = M{0) M(1) = N N
q 0 l-gq 0
0 0 | 0

Now consider the tape x = ((}nl}k € %, The transition matrix M(x)

ig
N Tk
1-p% 0 P 0
1 0 0 0
M(x) = n n
q 0 l-q 0
0 0 | 0

Since the states s, and Sy form a recurrent set with respect to tape
x = (Onl)k, we consider them separately and determine their limiting
behavior as k—® ., The matrix corresponding to states Sy and $4

1s denoted by A and is given by

°1 $2

n n

s; (1-P P
A=

n l_n

s, | 4 q

The behavior of the limit Q = 11(13@ Ak can easily be determined by

expanding A in terms of its constituent matrices as

A:U1+(1-pn-qn)U2

where a = q"/(p" + q") and
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c
I
c
t
-
¥
c

Since Uf = U1 » we have U, U, = 0 and Ug = U, . By induction

k
Aszl-i-(l-pn-qn) U,

Thus lim .""ak = Ul for 0< p, gq< 1. Consequently, if we choose

k—-CD

P = q in the unperturbed system then we have

Lol
2 2
lim A™ =
k= L1

2 2 | .

Now let us perturb the nonzero entry q tobe q=p - & where the

quantity & > 0 can be made arbitrarily small. In this case, the

perturbed limiting behavior is given by

a! l1 -a'

lim A'F =

k—»o a! l1 -a?
n

where a;l = (p - B)H/(pn +{p - 6)") . Now the quantity a;l can be
made arbitrarily small by choosing n sufficiently large. Consequently,

givenany &> 0 and forany 0< € < —12- , there exist integers K

and N such that for tape x = (ONI]KG Z* we have
- _1_ 1 >
| M(x) - M'(x)| = (3-0al)> ¢

Hence, the NQD automaton K is indeed o-unstable.
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The basic idea in this example can be seen by referring to

the state diagram of K shown below:

depletion depletion
state state

1-p l1-q
storage storage
state state

where mpmm and —— denote 0 and 1 transitions respectively.

The transition matrix for tape x = 0 is 2-decomposable so
that there are two disjoint subsets of states S(l) = {sl, sz} and
S(Z) = {53, 54} contained in S that are recurrent with respect to
tape x = 0. Tapes whose transition matrices possess two or more
disjoint recurrent subsets are called cycling tapes. The cycling
tape x = 0" is used in the counter example to reduce the probability
of being in states s; and s; to arbitrarily small quantities pn

and qn respectively. Then, the dump tape y =1 interchanges the

probability of being in states sy and S5 and dumps all the probability

in $5 and S4 back into 8y and 85 Now if p = g there is no net
transfer of probability between subsets S(l) and S(Z) . If gq=p -9,
6 > 0, however, there is a net transfer of probability from S(l) to
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S(Z) . It is quite clear that if the process is repeated enough times
for a given 6 > 0 and with a sufficiently large n, essentially all

5(2)

the probability gets transferred to . This causes the o-instability.

The tape x = (Onl)Zk which revealed the o-instability ¢an be
partitioned into '"scrambling'' subtapes z = (Onl)z with scrambling

matrix M(z) as follows:

x =25 = 9" 1)% (0")% (0"1? ... (o"1*
This leads us to the important question; what mathematical condition
is sufficient to block the quasi-definiteness used in Theorem 2. 3.1 to

prove stability 7 Clearly, we can write x =y zk and apply the same

arguments used in the proof of Theorem 2. 3.1 to obtain

IM(x) ~ M"(x) | < [M(Z5)] + M)+ | M2S) - M5y

ﬂ1] is

- . n
However, the minimal nonzero entry a in Miz) = M{(0"” 1 0
not bounded away ifrom zero as n increases, Hence, we cannot use

Theorem 2. 2.1 on the subtapes z to select an integer K to insure

that

HM(ZK)" < (1 -an)Kg € for 0<e<

For, assume that one such bound K is found., Clearly, one can
choose n sufficiently large for 0< p, q < 1 so that

{1 - un)K > €, whichleads to a contradiction. Thus, we see that
the behavior of the minimal nonzero entry attained prior to the
scrambling condition plays a fundamental role in zero-stability

analysis.
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3.1. Cyclic Structure of NQD Automata
Let () be a NQD automaton defined over the alphabet

T = {c,rl, Tos wees croE} and on the state set S={sl, S5s +res 8 } .

n
We now generalize certain notions of a single Markov matrix to apply
to our finite family of such matrices. We denote a subset of S by
S{i) where i is an integer,

We say that a state Sj is accessible from state s, Ly tape
x e TF , and write x({ si) —_ 'sj , if the (i, j) entry in the transition
matrix M(x) is nonzerc. More generally, we write x(S(i)) = Sgci)
to denote the set of states in 5 that are accessible from the states
in S(i}C S by tape x. If for a tape x, x(S(i}) = SE:)C S(j), then
S(i) is mapped by x into S{j} , and we denote this by x(S(i)) — S(j) .

An onto mapping is denoted by ""—"' .,

Definition 3.1,1.: A set of states S(l)C 5 1is said to be recurrent with

respect to the tape x iff Sg(i)C S(i) .

Definition 3.1.2.: A tape x € Z¥ is said to be a cycling tape iff there

exist two or more disjoint subsets of states in § that are recurrent

with respect to x. Each recurrent subset is called a cyclic class.

Definition 3.1.3,: A tape x € Z¥* is said to satisfy the cyclic condition

C{x; S“), S(Z), oy S(t)) iff x is a cycling tape of the cyclic classes
t .

S“), S(Z), e S(t). If, in addition, U S(l) = 5, then the cyclic
i=1

condition is said to be completely t-decomposable (denoted by

cBx; s, 513 ., sy,

Clearly, if a tape x € =* satisfies the cyclic condition

C(x; S(l), S(Z), ey S(t)) then the transition matrix M{x) is partially
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t-decomposable. Consequently, Theorem 2.2.4 implies that the matrix
M(x} has precisely t unit eigenvalues. Thus, we see the close

relationship between the cyclic structure and the number of unit

eigenvalues. It is important to note at this point that C(x; S(l),

S(Z), asey S(t)) implies only that x(S{l)) - S“) for i=1, 2, ..., t;
and it does not imply that x{g{i)) -~ 5(1) where g(l) is the complement
of 5(1) in 8. The transition matrix corresponding to a cycling

() gl2),

tape x that satisfies C(x; S . S(t)) has the form

st} &) 2) 5t

g [l o @ )]
g1 pll)
el p(2)
M(x) =
S(t} p(t)

upon suitably relabeling the states.

Definition 3.1.4.: A cyclingtape x=0a, 0. ... 0. 1is said to be
11 12 ld
a prime cycling tape if no proper subtape of x of the form

F, o, evs ., 1€ 1< k< d, is a cycling tape.
i 4+ 1k

Definition 3.1.5.: A tape x is said to satisfy the prime cyclic

S(l), S(Z), .y S(t)) iff x is a prime cycling tape
stV gler gt

condition CP(x;
of the cyclic classes
The notion of a prime cycling tape is intimately related to

the s-stability problem as we point out in the next theorem.
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Theorem 3,1.1.: A probabilistic automaton (¥ is s-stable iff ¥

contains no prime cycling tapes.

Proof: (a) If @ is s-stable, then Z* contains no cycling tapes.
For, if we assume that there exisis a prime cycling tape x, then
there exists a fixed y > 0 such that lim || M(x)|| > v . Consequently,
lg—= -
s -instability is evident by observing that the symbol matrices of @
can be perturbed so that (' is quasi-definite, whence
lim || M (x5 | =o0.
K=<
(b) If (’ is s-unstahle then (¥ is a NQD autormaton by

Theorem 2.3.1. Thus, for any integer k there exists a tape
X=0, 0. ...0O, with lg(x} = m > k for which the matrix

11 12 1y
M(x) is not scrambling, Consequently, there exists two states

s, and sJ. in 5 such that

;) o) @ 3 Tim m)
s oo 2 2’3 %im o p(m)

where 890 1) = ¢ (=1, 2, ..., m).

Since there are only a hounded number B (see Lemma 3.2.2) of such
distinct allocations of the state set S5, it follows that any non-
scrambling tape x with length lg{x) ® B must contzin a prime

cycling tape.
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3.2, Some Properties of the Cyclic Structure
In this section we develop some fundamental properties of

the cyclic structure of NQD automata. We now prove some lemmas.

(1)

Lemma 3.2.1.: If x=¢. o, ... 0. satisfies C{x; § 7,
i i i
2 t ! . d ke
S( ), ey S( )) then for each initial segment Xy = T, 0. ... O,

(k <d) of x, and for all 1 < i, j<t (i£]j)

(i) (i) _
skr\slk- ]

xl '.‘Ll

Proof: Assume, on the contrary, that there exists two structures
s ana sU) of cix s, 5%, L, st such that
s“ll M s“ll =V4Ad . Then

X X)

6 v, c s st
Xt 1
in viclation of the defining requirement of disjoint cyclic classes
of the eyclic condition,
Lemma 3.2.2.: Ifatape x =¢., o te. G satisfies a prime

1 12 ld
. . (1) (2} ! n+l
cyclic condition Cp(x, 87, §877) then lIgix)=d=< 37 -2 +1,

n
where n is the number of states in S,

Proof: By Lemma 3.2.1, all initial segments xl; of x must be

such that S(lk) M S(?I() = ¢ . The successive pairs of images
X x
1 |

S(];() and S(Zk) are disjoint asg illustrated below:
*1 )



o, o, T, o
1 1 3 d
{1}y {1}y . (1y -~ cil)
5 5 1 s 2 S d
xl xl xl
o, o, o, o5
{2) _l1 {(2) _2 o(2) 3 ~d o(2)
s s ] S 2 S 4
*1 *] X1
where S(L) ﬂ S(i) =¢ for k=1, 2, ..., d. Itis important to
x x
1 1

note that S“k) W S(i) may not be the whole state set. All that is

X X
1 1
required is that S( L) and S(i) be nonnull and disjoint. The maximum
x X
1 1

number of such nonrepetitive, nonnull allocations of n objects can
be computed as follows: The number of allocations of subsets of

n objects into two sets A and B, so neither A nor B is empty,
is equal to the number (3“’) of assignments of n objects to A, B
or neither, minus the number (Zn) in which A is empty, minua the
number (2™) in which B is empty, plus the {1} asgignment for

which both A and B are empty. The totalis d=3"-2. 2" +1,

3.3, Algorithm for Liocating Prime Cyclic Tapes

A bounded algorithm is given here for locating all prime
cycling tapes in =¥ . The algorithm can also be used to decide
the quasi-definite condition since, by Theorem 3. 1.1, the quasi-
definite condition is satisfied if and only if there do not exist any
prime cycling tapes. The basic idea involved which stems from
Lemmas 3. 2.1 and 3. 2. 2, consists of forming a transition tree of
the possible disjoint transitions. More precisely, if x=¢, o, ... 0.

1 1 1
(D 2 e we - d

satisfies the prime cyclic condition Cp(x; S then we

have the following sequence of transitions
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T, a. 18 T-

1] 1y 13 14
s 2 g 2 2 ) e g
X x
| 1 1
. o. [1 g -
| 12 13 149
@ 2@ Zga 2 g o g2
*1 *1 *

Lemma 3.2.1 implies that

s“k) M 5(‘7;() = ¢ for 1< k< n,
*) X

Thus, one only needs to consider the possible sequences of disjoint
transitions in order to locate the prime cycling tapes in Z% ,

Let us consider the probabilistic automaton (P defined
over the alphabet Z = {crl b Oas ey T s } and state set
S={1, 2, 3, ..., n} by the transition matrices M(s)), o€ = .
The algerithm involves constructing a transition tree of the possible
state transitions. With each tape x € Z¥ , we associate an "access
vector” Vx whose ith component Vi{i) is the set of states acceasible
irom state i by tape x. We now construct a transition tree whose
vertices are the access vectors and whose directed edges are labeled
by the symbols T, € L , that map the access vector Vo into the
access vector V__ . The root vertex of the transition tree is the

i
access vector V¢ ={1 |2 |...| n | corresponding to the null

tape ¢ . The transitions emanating from a given vertex are ordered
by the symbols o from right to left as T1s G5 ey Tox «

Next, any component VS) and its successors are crossed out
if VS) has a nonnull intersection with all other components in V-

That is to say; we retain only those components Vg{l} of Vx that
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could generate a cyclic structure,

Each branch in the tree is terminated when either 1) all
components of the last vertex are crossed out, or 2) there exist
two disjoint sets of components that are recurrent from a
preceding vertex. The first termination, called a scrambling
termination, implies that the scrambling condition has been
reached. The second termination, called a cyclic termination,
implies that the tape generating the recurrent classes is a prime
cycling tape. This algorithm terminates in a bounded number of
steps, since the transition tree so defined is bounded by Lemma
3.2.2.

The following examples clarify the essential features

encountered in constructing the transition tree.

Example 3.3.1.: Consider the automaton (¥ defined over the

alphabet T ={o¢,, ¢,} on the state set S = {1, 2, 3, 4} Dby the

transition matrices.

T NIE TN

1 2 3 1 2 3
B 1 3 n B 1
1 0 Y 3 4] 1 0 0 z
2| o -f; % 0 2 é— lz 0
M(e)) = 1 2 M{c,} = 1 3
3l = o o £ 3= =2 o o
3 3 4 1
1 2 1 1
4 _'3"‘ 0 ] 3—_ 4 _0 0 5 5

The transition tree for the example at hand is given below:
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Scrambling

3 vdl d
W
4 )\;\q % T2
Scrambling /U| Cylic Scrambling
il it I EB 3]s i 1 1
2Nl 2|2 4] "172
?'—2 Ty
Z12pp v
3l 3] 4] 4|
Ftiid]
314 Ve

We observe that branch x

recurrent subsets, 5“}= {1,2}

to tape x = Ty Ty That is to say, Sg_llluz

= 0 7; Ppossesses two disjoint

and sl2 - {3,4} with respect

(1) (2)
-5 and S —- 85 .
o172

(2)

Thus, the tape x = o0, is a prime cycling tape. Also, branch

% = g,7, 0, again points out that the tape x = LIL is a prime

cycling tape. Since all other branches terminate by the scrambling

condition, the tape x = T

Example 3.3.2.: Consider the automaton G defined over the

L is the only prime cycling tape in =2,

alphabet Z = {a'l, D’Z} and on the state set 5= {1, 2, 3, 4} by

the transition matrices,

o P 1 Py 1]
P [i] 1 “P| 1]
M(w) L-p0 0

1 “Pp L] 2}

where 0 < Py PO B

Mo

2) =

1 0

o Py

0 0
I_FZ 4]
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The transition tree for this example is given below:

1 X o X x X X l X X
\%2 /%1 \’2 /0
3 1 1 3 1
4 2 3 al* [ 2* x
PN [ o1 T2 1
3 1 2 1
217414 2 3 4
\crz /o'l
11213 |4

Since all branches in the transition tree are terminated by
the scrambling condition, there do not exist any prime cycling tapes
in =¥. It follows by Theorem 3.1.1, that the given probabilistic

automaton is indeed s-stable.

3.4. {Quasi-Actual Cyclic Conditions

In this section, the ¢yclic structure is refined so that we
can obtain some co-stability results for NQD automata by methods
gsimilar to those used in Theorem 2,.3,1, First, we recall that if
atape x ¢ =¥ satisfies Cfx; S“), S(Z), ey S(t'}), then the

transition matrix M(x) is a partially t-decomposable matrix,

i.e., M(x) has the form

s ) g2 5(0)
s [(plo L 2o
51 Pl
5(2) p(2)
M(x) = _ (3.4.1)

5 (0
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upon suitably relabeling the states,

Definition 3.4.1,: A partially t-decomposable matrix {(3.4.1) is

said to be block actual if T =0 ana P> 0 for i-= 1,2,...,t.

Similarly, a t -decomposable matrix is said to be block actual iff

P> 0 for i21,2,...,t.

Definition 3.4.2.: A partially t-decomposable matrix (3.4,1) is
(o)

said to be block quasi-actual iff T = 0 and the only zero entries

. i .
in P( ) occur inh columns of zeros.

Definition 3.4,3.: A cyclic condition Gix; st!7, s'4), s(th

L Y

is said to be actual iff the partially t-decomposable matrix MI(x)
is block actual.

Definition 3.4.4.: A cyclic condition Cix; S“}, S(z), ey S(t))

is said to be quacsi-actual iff the partiaily t-decomposable matrix

M(x) is block quasi-actual,

Definition 3.4, 5.: An unbounded product |] of stochastic matrices

Pi is said to be nonlimiting iif there exists a2 fixed a > 0, such
that for each positive integer k, the minimal nonzero entry in

k
T P.1 is greater than a.
i=}

Let A be an (n xn) stschastic matrix and B be a (n x n)
matrix whose only zero entries occur in columns of zeros. Then

for any nonzero entry <, j in C=AB

n s n
c. .= Za.kbk.>bmm2 a . = b
1},] k:l 1: JJ - k:I 1)

min . . )
where b is the minimal nonzero entry in B. We now have the



following lemma,

Lemma 3.4.1,:

satisfies a quasi-actual prime cyclic condition Cp(x

If each X,

in the tape x = X)Xy X

45

3 ot Xk...

cgt) gl gl

then the matrix product Mix) = M{xl) M{le M(x3) ves M(xk) ee. 18

nonlimiting.

This result follows from the above inequality by observing

that for any positive integer k,

—

-
1l
[—

1 1(2) ) 7]
x . X. x.
1 1 H
p(1)
x.
1
p(2)
x.
i
plt)
X
(1), plly (2) | pl(2) (t)  olt)]
0 Txl Pk Txl Pk Tx]'Pk
%2 *2 *2

where T} o pif} plr)

x!
1

X il

P:) for r=1,2,...,t.

Throughout

J

this paper, we shall refer to an automaton represented by such a

matrix product as a ''direct sum' of disjoint automata.
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Lemma 3.4.2.: If each prime cycling tape in Z* satisfies some

actual prime cyclic condition that is completely t-decomposable,
then each cycling tape in =¥ satisfies some quasi-actual cyclic

condition with exactly two cyclic classes.

Proof: Consider any cycling tape x € ¥ that satisifies the cyclic
condition C{x; S(l), S(Z)) . If the tape x is not a prime ¢ycling
tape, then x can be partitioned to display a prime cycling tape

Xy as follows:

X = Yl Xl Zl

where ¥y oY #; could be vacuous. Since Xy is a prime cycling

ta . N . o D Cp(l) (2)
pe, it satisfies some actual cyclic condition CP(xl, T, TV,

that is completely decomposable. Consequently, we have for some

permutation R of the integers 1 and 2 the following mappings:

Y X z

stoh g 5 L sty g8
y x z

S 1 @A) YL RO T ()

R@: L (R2) 71 g(2)

—

¥
5(2)

—

o i : .
where S( ) contains the non-enterable transient states. Since

Cg(xl; T(l), T(Z)} is actual, for any states s € S“) and te S(Z)
we have
z
g gl = TROD ILpRW) oy g
“1
and
“ Z

%

Hence, the gquasi-actuality condition is preserved.
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3.5, Zero-S:ability Theorem
In this section we use the cyclic structure to obtain a

o-stability result for NQD automata, by methods similar to those
used in Theorem 2.3.1. The result extends the Rabin stability
problem t> NQD automata, We shall omit some of the € and &
details, given in Theorem Z2,3.1, that serve only to obscure the
initial understanding of the proof.

A tape x € Z¥ is said to be respectively o-stable,

» nonhimiting, or scrambling iff the matrix M(x)

is o-stable, nonlimiting, or scrambling,

Theorem 3,5,1.: A probabilistic automaton & is o-~stable if

each prime cycling tape in Z*¥ satisfies some completely 2-decomposable

prime cyclic condition that is actual.

Proof: Let x be any tape in T*, First, we shall prove that if
xe Z¥ is nota scrambling tape, then x ts o-stable and nonlimiting.
Secondly, we shall use this fact to prove that all scrambling tapes

in Z% are o-s*able under the conditions of the theorem.

An ordered collection of disjoint nonempty subsets
s &2 St

(S(l), Slz), ..., Sy, is called an t-ordered cyclic

of the state set 5, written

structure.

Casel: If xe =¥ is not scrambling, then we can partition x into

X =y X Y| X3 ¥, 00 Xp¥p (3.5.1)

Il-
1 -
where x; = Tl_ x(']) denotes a concatenation of cycling tapes
. j=1 :
x(i']) € =%, that satisfy a cyclic condition C{ng); Sgl), ng)). The
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different possible 2-ordered cyclic s*ructures are indexed by i,
and the tapes that preserve these ordered cyclic structures by j.
The tapes y, are "transition' tapes that do not contain any cycling

subtapes. Clearly, the finite state assumption gives a bound

n n+l

B=3 -2 +1 (see Lemma 3,2.2) on the number of distinct

2-ordered cyclic structures, where n is the number of states in

S -
For a suitable ordering of the ordered cyclic structures, the

concatenated form of x in (3.5.1) is obtained by first segmenting

off all cycling tapes x(lJ) as

!
n.
{ 1)

x = X, Z x:Wx(j)'
Yo¥1 %1 1 j:11 ’

50 that the tape contains no cycling subtapes, and no initial
Pe ¥V, Yy g P

(1)

1 ng"} . Next we segment off

segment of z, satisfies C(®; S

1
: (3)
all cycling tapes x5 as

so that the tape Y1 contains no cycling subtapes and no initial
{ (23
segment of z, satisfies Cf®; S::l", S‘ZZ"} . Continuing this process,

we obtain the concatenated form of x shown in {(3.5.1). In general,

(1)

the cycling tapes X, inf{3,5.,1) are not prime cycling tapes.

Definition 3.4.4.: A tape xe€ Z¥ is said to generate k ordered

(j)

cyclic pairs iff k is the minimum integer such that each X, in

the concatenated form (3.5.1) of x,

X = Y X Yy Xp ¥y e X Yoo where m < k,
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generates (k - 1) or fewer ordered cyclic structures. For k=10
we mean that x contains no ¢ycling subtapes,

We now prove that any nonscrambling tape xe =¥ is
o-stable and nonlimiting, using induction con the number of distinct
ordered cyclic structures generated by x, First, we show that if
x € Z¥ generates only one ordered cyclic structure, then x is

o-stable and nonlimiting. We partition x into
)
x =y %y sox = T,
j=1

(i) D (lj); s(ll ), sgz)) . It follows from

where each X satisfies CP(x
Lerma 3.2.2 that the lengths 1g(y_), lg (y,), and Ig (x(]-”) are

ntl + 1. We observe that the matrix product

no greater than 3% -2
M(xl) is o~-stable, since it can be viewed as a direct sum of two
disjoint quasi-definite automata (Theorem 2,3.1), Lemma 3,4,1
implies that the matrix product M(xl) is nonlimiting. Since the
lengths lg (yo) and lg (yl) are no larger than 3% . 2n+1 +1,
the tape x is o-stable and nonlimiting.

To complete the induction proocf, we assume that any non-
scrambling tape x € =¥ that generates k or fewer ordered
cyclic structures is o-stable and nonlimiting. Consider any non-

scrambling tape x € =¥ that generates k + 1 distinct ordered

cyclic structures, and partition it into
X= Y X ¥y Xy Voo XY 5 (m<k+1)., (3.5 2)
Each cycling tape x{i‘J) in {(3.5.2) generates k or fewer ordered

cyclic structures. Hence, by induction, we know that the matrix
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products M(xg‘])) in(3.5.2) are o-stable and nonlimiting. That

is, given any €, » (0 there exists a 6{&‘1) > 0, such that the

1
inegualities
|M(cri) -M'(cr.l)[ <6 ¥ o5 eZ

imply (3.5.3}

| M) oM ] <6

for all xgj} in {3.5.2). Lemma 3.4,2 implies that each cycling
tape xgj) € Z% satisfies a quasi-actual cyclic condition with two
cyclic classes, Note that Lemma 3,4, 2 requires each prime cyclic
tape to satisfy an actual prime cyclic condition that is completely
2-decompesable, Then, Lemma 3,4.1 implies that each matrix
product M(xi) in (3.5.2} is nonlimiting, Now each matrix product
M(xi) in (3.5.2) is o-stable by Theorem 2.3.1, since each can be
viewed as a direct sum of two disjoint quasi-definite automata.
Since the length of each ¥ in (3. 5.2) is bounded by 3% . 2n+1 +1
(Lemma 3,2,2), it follows that the matrix product M(x) is o-stable

and nonlimiting. That is, given any € > 0 there isa € » 0 and

a corresponding 6(61) > 0 in (3.5, 3), such that the inequalities

|M{cri) -M'(e) < & ¥ oeX
imply that
| M(x) - M'(x)| < €

Since the induction is bounded (k < B), we conclude that any non-

scrambling tape x ¢ =* is indeed o-stable and nonlimiting,



51

Next, we prove that if x e =¥ iga scrambling tape, then

x 1s o-stable.

Cage 2: If x is a scrambling tape, then it can be partitioned into
""prime'' scrambling tapes Y, that contain no scrambling subtapes,

as follows:

where WS Y Y e Yy Yy Now, if the length of ¥; is no
larger than 3" 2n+1 + 1, then clearly we can choose our
perturbations of the symbol matrices sufficiently small so that
M(yi) is o-stable and nonlimiting. On the other hand, if the length

2n+1

of ¥; is greater than 37 . +1, then we can delete one symbol

and consider ?i defined as

Since ?i is not scrambling, Case 1 implies that M(?i) is o-stable
and nonlimiting. Consequently, the matrix M(yi) = M(r.ri) M(Q.l)
is o-stable and nonlimiting. Hence, the perturbations of the

symbol matrices can be chosen sufficiently small so that

| Miy) - M'iy)| < € ¥ oy, ex (3.5.4)
for any given €, > ¢.
LConsider the matrix norm
[ M(x) - M'(x)| = | M(w) M{w,) - M'(u0) M'{w)|

By adding and subtracting terms, we get
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| Mx) - M'G)] = | (M(u) Mlw_) - M(w_)) - (M'(a) M"(w_) ~M'(w_))
+(M(w ) - M'(w )] .

The triangle inequality yields

| M(x) - M'(x)| < | M(u) M(w_) - M{w )| + | M'(u) M'(w_) - M'(w_}]
[ Mw ) - Mi{w )| .

Applying Lemma 2.2, 4, we obtain

| M(x) - M} £ [T Mew ) ]+ I M)+ [ Mew ) - Miw ) ]

Let v and ¥' be the minimal nonzero entries in {M(yi)f y;€ x)
and {M'(yi)| ¥; € x} respectively. Since each matrix string M(yi)
is nonlimiting, there exists a fixed o suchthat vy, y'2a > 0,
By Theorem 2.2.1, we choose an integer N sufficiently large so
that | Mwll <1 -a < § and Mgl sa-a < £,
Since N is a finite integer, we can choose €, > 0 in (3.5.4)
sufficiently small so that | M(wn) - M'(wn)[ < 35 . This completes
the proof that given any € > 0 there exists a 6(¢) > 0 such that

the inequalities

]M(cri) - M‘(cri)! < 5 ¥ 0.¢Z
imply the inequalities

| M(x) - M'{x)| < € ¥ xeZ

if the zero entries are not perturbed.
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3.6, Algebraic Structure of NQD Automata

In this section, we obtain some o-stability results for NQD
automata in terms of their algebraic structure. The algebraic
systems called semigroups, monoids and groups satisfy,
respectively, the first two, three, and four of the follocwing axioms:

Let a, b, ¢ represent any elements in a set ,J ; then

Al) Closure Law : abe vd
A2) Associative Law (ab)e = a(be)
A3) Identity Law : Heled,av ae;&,aelze a=-a

A4) Inverse Law - % ac ,4,3 a-l E,J 3 aa-l =ala =

The set of all {(n x n) stochastic matrices forms a semigroup.
But, although the inverse Atl of an invertible stochastic matrix A

has unit row sums, since

some entries in A_l will be negative unless A 1is a permutation

matrix. Hence A_l need not be stochastic. For example,

11
2 2
A = implies Al . .

Thus, one needs an identity element that is more general than the
ordinary unit rmatrix in order to have a potentially fruitful stochastic

computing structure,
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The general structure of a group of stochastic matrices has
been examined by M. Rosenblatt [15], 1965. We shall adopt some
of hig notation and characterize the structure of certain NQD automata.

This will enable us to obtain a o-stability theorem,

Definition 3.6.1.: A [(n xmn) stochastic matrix U with identical

rows is called a primitive idempotent matrix. It has the form

U = Is u where u is an arbitrary row vector of U.

Since a general idempetent stochastic matrix plays the
important role of an identity element in the algebraic structure of
probabilistic automata, it is important to determine precisely its

structure,.

Theorem 3.6.1,: If P is a stochastic idempotent matrix labeled

by states, then there is a partitioning of the state set § into disjoint

sets of S(o), 5(1)' ‘s es S(t) so that P has the form

glo) gl gl2) . glt)
s [ o otyil)  ql@y(d Qtty(t)]
(1) uih)
s(2) u?)
P = (3.6.1)
glt) ult)

where U(l) (i=1, 2, ..., t) are positive primitive idempotent
matrices. The Q(l} {(i=1, 2, ..., t}) are OS(O) by OS(I) matrices

that can be chosen as



oglo)

1 2
agi) ]
a{zi) 0
agi) 0
{i)
_aos( o)
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—

{3.6.2)

. t .
where 0 < agl)f_l and I o.-(il) -1 for j=1, 2, ..., %8\

i=1

Proof: We recall from matrix theory that P can be transformed

into Jordan form A by a suitable similarity transformation,

-1

S " PS=A

Since PZ = P, we have

s'1 P

whence it follows that the eigenvalues of P are either 1 or 0.

2

s=s‘l

Theorem 2.2, 5 implies that

Ps=A°-A

P is partially t-decomposable.

That

is to say, there is a partitioning of the state set 8§ such that P

has the block form

5(0)

" (o)

ey
L)

p)

—

§2) S(0)
{2) (0
p(2)

)
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Note that, if P hada 0 column under S(i) for 1> o, then this
column could be included in S(O) by a relabeling of states. Thus,
each P(i) can be made a positive idempotent matrix that has
precisely one unit eigenvalue, Consequently, each P(i) has rank
1. The stochastic condition then implies that each P(i) has identical
rows., Hence, each P(i] is a positive primitive idempotent.

The eigenvalues of T(o) are all zero, since T(o) is nil-
potent, i.e., there exists an integer m such that (T(o))m =0.
Since T(o) is also idempotent, it follows that T(o} = (T(o))m = 0.

The idempotency of P requires each T(l) to satisfy
o) o ) pli) (3.6.3)

Each positive primitive idempotent P(l) has the factorization
pli) o ) )

() is a positive stochastic row vector. If I(l denotes

(1)

Y unit matrix I'"', then

where p i)

the first row of the (°s'V) x %s{!)

LR A S TN
l,s s

(1) _ p0G) pli) _ i) (4 ) 3y ()
T =T P =T"1I {11’_'.13)1:r

(1) (1), {1} i) _ A(1) i)
(T IS)II’.P = P

where QY is defined in (3.6.2).
It is convenient to employ the concept of o-equivalence of

two matrices.
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A is o-equivalent to B (denoted A A, B} iff
. A and B are (n xn) matrices having the same
zero configuration,
In general, a probabilistic automaton (® whose set of
» s L - ‘ |

transition matrices = { M(x) | x € ¥} forms a monoid need
not be o~stable. In fact, if one designates the identity element U
as the ordinary unit matrix, one can construct an example similar
to Kesten's, that is also o-unstable. However, if we enrich the
"monoid' automaton with the additional property that each element
Pe i has a corresponding '"'reset element" P € J such that
P P* & U then we can obtain o-stability. We call such a system

a reset monoid, The "reset property'' gives the autornaton the

ability to reset itself back into the idempotent cyclic structure.

It is important to notice that the '"reset property" does not assume
P P* = U. However, the following development proves that the
reset monoid conditions do imply that P P* = U. Thatis to 54y,
a rmonoid set ;J of (n xn) stochastic matrices is a group if
each element Pe ,J has a corresponding reset element Pf ¢ J
such that P P* AU,

We begin by considering a "zero-reset' probabilistic automaton

(P whose set of transition matrices ,d = {M(x) | xe Z*} contains

a block actual partially t-decomposable matrix U such that,
PULSP V¥V PE,J ’ {3.6. 4}

and such that for each P ¢ ,J there is a cerresponding ''reset

element" P’ ¢ ,J satisfying

PpP S, U . (3.6.5)



By definition, there is a partitioning of the state set so that the

matrix U has the form

S(O)
s}

52)

St

where each B{1)> 0, i.e., all entries in Bm are greater than

zero, Let P be any matrix in .J and partition the rows and

columns as in U,

5to)
51

5(2)

&)

One readily observes from (3. 6. 4) that P(l' 0) =0 for i=40,1, 2,

—

5(o)

0
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s 42

o) (@)

5(®)

(t) ]

pre

glol

(0, 0}
pl1: 0)
pl2. 0)

L

plt. 0)

5D
pl0, 1)
pil. 1)

plz. 1)

plt 1)

..., t. Then (3. 6.4) implies

In order that P P¥ ~, U, itis necessary by Lemnma 3,2.1 that

pli i) o plhi) g)

52)
p{0,2)
o1, 2)

pl2:2)

plts 2)

.

LECIE S

-

* &

- e

B(®)

St
pl0, t]
pll, ©)

pl2.t)

. .

plt. )

-

(3.6.6)

{3.6.7)

(3.6.8)
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the matrices P and P’ generate the following mappings:

r
St ) 5(1)

iy
s B L2) EF (2)

1)

|0
5]

- . .
-

- . .

r
$(t) NONS G

Ite

where the sets T(l) (i=1, 2, ..., t) are pairwise disjoint. Now

each element Pe¢ ,3 must be such that PU &, P. Hence

s B (1) U i)
s(2) B (&) U (2)

. *

st B o0 U )

—_

The structure of U in (3.6.6) requires each S(l) to be some S(J) .
This implies that each element P performs a permutation on the
cyclic structure as follows:

s B (RO

g2 B (R(2))

) B gR(t)

e

where R is a permutaticon on t integers. We summarize these

results with the following theorem.
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Theorem 3.6.3.: Let (R be any subgroup of the total permutation

group on the integers 1, 2, ..., t. If (# isa zero-reset

probabilistic automaton, then any matrix P € .4 = {M(x) l X € E*}

haas the form

for some R € 8 , where each P

S(O)

0

o

[ ]

st st .. st
50,1) 50,2 L0,
{1,1) {1, 2) (1, t}
% rR(1HE 6., r2)F «re 8 riyF
(t, 1) {t, 2) (t, t)
5 r()T b, r(2)F cer 8 mwP
(3.6.9)

(1,

J)> 0 and has unit row sumes for

1 < i, )< t. The notation implies that each row and column

except the first has exactly one non-zero block that is positive.

We now consider a

regset monoid" probabilistic automata

(P whose set of transition matrices é = {M(x) | xe =%}

contains a two-sided identity element U = U2 € ;J and for each

P there is a corresponding reset P’ SJ , such that P P¥ A U.

Thus, for each P e ,d we assume that

and that there is a =4 € ,3

UP=PU=P (3.6.10)

such that

Ao U

(3.6.11)
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The general structure of the stochastic idempotent matrix

U is given by Theorem 3.6.1 as

S(O)
gt!)
5(2)

5

g(o)

-

0

D)

oDy (2)y(2)

5(2)

-

Qlty(t)]

5t

(3.6.12)

4

where each U(I) is a positive primitive stochastic idempotent. Let

P be any matrix in ;x partitioned in the same block formas U,

Theorem 3, 6,2 implies P has the form given in {3.6.9). Then it

follows from (3. 6.10) that

where A(i, j)

is a

os(i) by

ogli)

(3.6.13)

rectangular matrix whose (k, k)

entries are ones and whose other entries are 0. Now, if P PF - TAU

then U has the block form

—

s(0)

0

(1)
(1)

1)

52)
(2)

5(t)

7]
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Since each Uh) in (3.6.12) is a primitive idempotent, we have

'ﬁ(i) U(l) = Uh) (i=1,2,...,t). Consequently, the right identity

condition U= U U implies that U(i) = U(l] for i=1,2,...,¢t.

Then, it follows from the left identity condition U= U U that

20 gl )

shown that any monoid set J

which has the ''reset property' is a group.

much easier to recognize the

1,2,...,t), whence U=U,

of (nxn)

Thus, we have
stochastic matrices
We note that it is

'reset property'’ than the "inverse

property', especially on a computer, where round off errors

may obscure an exact inverse,

We summarize these results with the following theorem

which is equivalent to a theorem of M. Rosenblatt [15], 1965.

Theorem 3, 6, 3,:

group on the integers 1, 2, ...

contained in a group G of (n x n)

Let R be any subgroup of the total permutation

t. If a general element P

stochastic matrices is

partitioned into the same block structure as U, then P has the

form

o(R(1)) (1)

(1)
6 ryd (LW

6 Az, 1ot

2, R(2)

§ (t, 1) ot

t,R{l)A

]

§

)

Q(R(2)) (2)

{2)
LRA LD L

(2)
2, R(2)3 DU L

(2)
¢ 22 (B2 UL

QR(D) ;(8)

5 aq,nu'®

1, R(t)

%2, R(t)

) At t) U(t)

t, R{t)

(3.6.14)

a2, vut
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for some R in (R , where the U{i) and Q(i) are defined by

the stochastic idempotent matrix U in Theorem 3,6.1.

Definition 3.6.2.: A probabilistic automaton (j) whose set of

stochastic matrices -J = {M(x) | xe Z*¥} forms a group, is
called a group probabilistic automaton.
Our next theorem is a o-stability result for a large class

of NQD automata.

Theorem 3.6,4.: Any 'zero-reset' probabilistic automaton

is o-stable,

Proof: Let Ued = {M(x) | xe Z*} denote the given block
actual partially t-decomposable matrix. We relabel the states of

@ so that U has the form

glo gy g2y )
st [ SEOY BT B (2
1) 51
s(2)
U =
g(t) gt
L —

where each B(1) > 0. Let x be any tape in =¥ . We partition

x, as in Theorem 3. 5.1, into cyclic tapes X,

X = ¥ X1 V1 ¥ ¥z - ¥ VB
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n

i .
sk
where x, = T xEJ} denoctes a product of cycling tapes xEJ} € Z

which satisfyjtzle cyclic condition C(xgj);S(l), S(z), cr ey S(t)) .
The different possible ordered cyclic structures are indexed by

i and the tapes which preserve these structures are indexed by
j. It follows from Theorem 3. 6,2 that there exist no more than
B =t! Qifferent ordered cyclic structures generated by Z* ,
We now prove by induction on the number of distinct ordered
cyclic structures generated by x, that M({x) is o-stable, First,

if xe =¥ generates only one distinct ordered cyclic structure,

then it can be partitioned as

™
X=¥eo ¥y % 7 ._” x(lj)
j=1

where each xg']) satisfies an actual cyclic condition

Cp(x(lj); S“), S{Z), ve s S{t)) . From Theorem 3.6.2, it follows
that the lengths lg(yo), lg(x(lj)) and lg(yl) are no larger than
t! . It then follows from Theorem 2.3.1 that the matrix product
M(xl) is o-stable, since it can be viewed as a direct sum of t
disjoint quasi-definite automata, Since the lengths 1g(y0) and
lg(yl) are no larger than t! , we see that Mi{x) is o-stable.

To complete the induction proof, we assume that any tape
x € £* which generates k or fewer distinct ordered cyclic

structures is c~stable. Consider a tape x € =* which generates

k +1 distinct ordered cyclic structures and partition it as

X=Yo X V] % eor Xy Vg (3.6.15)
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(i)

Now each cyclic tape x;°' in {3.6.15) generates k or fewer distinct
ordered cyclic structures, Hence, by induction, we know that the

(j)J

matrix products M(:-:.1 in (3,6,15) are o-stable. That is, given

any €, >0 there exists a 6(61) > 0 such that the inequalities
|M(o'.l) - M'(cri)| <& ¥ 5 el

imply (3.6.16)

IM(xgj}) -M'(xgj)}f <€, ¥ xgj)e X o

Now each matrix string M(xi) in (3. 6.13) is o-stable by Theorem
2,3.1, Since the length of each ¥i is bounded by t! , it follows
that the matrix product M(x} is o-stable. That is, given any

€ > 0, one can choose €, » 0 with corresponding 6(61) >0 in

1
{3.6.186) sufficiently small that the inequalities

|M(cri) - MT(cri)l < ¥ o .€Z
imply that

| M(x) - M'(x)| < € .

Since the induction is bounded (k € t! ), we conclude that any "zero-
reset' automaton is o-stable.

We observe in concluding this section that since the group
structure clearly implies the "zero-reset'" structure, any "group"

probabilistic automaton is also o-stable,



IV, ISOLATED CUT-POINT PROBLEM

The concept of an isolated cut point plays an important role
in probabilistic automaton theory, The a-stability result of Theorem
2.4.1 and the equivalence between probabilistic automata and
deterministic automata depend on the existence of an isolated cut
point. As Rabin pointed out in a recent book [ 2 ], 1966, there
are two open problems in this area. Let ® bea probabilistic

autormaton with rational cut point X .

Problem 1: Can one give a procedure for deciding whether or not

a given cut point X is isolated?

Problem 2: Can one give a procedure to determine whether or not

& has any isolated cut points?

The results of this chapter focus on these problems. Our
first approach is set theoretic. We define a set of response
intervals which contain the response points. Our second approach
ig topelogical, In this, we define a pseudo-closure operator that

encloses the points which are not isolated cut peoints.

4,1, Set Theoretic Approach
Consider a probabilistic automaton (P defined over the
alphabet % = {1, 2, ..., 02} and on the state set S= {1, 2, ..., n}.
We belglin by giving a very simple sufficient criterion to decide that
a given cut point A 1is isolated. We follow the development in

Section 2.4 by defining the response intervals Ri as in (2, 4, 2),

£6
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R. =[= AL, = 91N [0, 1] (4.1.1)
! jeF J  jer 1

for all i€ £ where

i Min .
ay = T My )
and
i _ Max .
vj = T {M(J}k.j} . o

The range of the response of the jth column of M(i}, pre-
multiplied by an arbitrary row stochastic vector p = (pl, Pas =0 pn) R

satisfies the inequality

- -
M1,
(i)
M, ]
i i
Aj < (pl, Pys «-es P . < Vj . (4.1.2)
M
n,_]
Consequently, we have
> A< n Mx)MGEoO_.< £ Ui (4.1.3)
jefr 3~ ° F= jer ]

for all xe =¥,

It is clear from (4.1.3) that all response points are contained in

R = U_ R, (4.1.4)

The situation is illustrated on the probability interval, PI= [0, 1]

below:
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PROBABILITY INTERVAL

1 [n1 | la}
T T

1 (n r'l o -'
Rty 7 Fq]

-

where the intervals may overlap. Any points not contained in any

Ri are eligible isclated cut points.

Criterion l1: Any cut point A € PI - R is isclated.

The analysis up to now has given only a suifficient criterion
to conclude that a given M\ is isolated. It is by no means necessary,
since there may exist isolated cut points within the response intervals.
The existence o anisdated cut point is guaranteed for actual automata
in view of the above results, since the entries in the symbol matrices
are positive. However, these extreme cut points may not be very

interesting, since they may accept or reject all tapes in =¥,

Example 4,1.1.: Consider the actual probabilistic automaton

(s, 7 , 1, 2) defined over the alphabet £ = {1, 2} and on the

state set 5= {1, 2} by the symbol matrices

1 2 1 2

3 1 1 2

SN I s 5

M(l) = oL 1] 0 M(2) = oL 3
2 2 4 4

Since F =1{2}, only the second column need be considered. The

response intervals Ri are piven by (4.1.1} as

] Ry
[a—

el _ 2
Rl-[z, and R-[g,

2

| L
| S
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By Criterion 1, any cut point A € [ 0, lz) ] (% , -?2’—) U (%, 1] is
isolated,

We now extend these response intervals to tapes of length
N by defining for each tape x € EN = {x]| Ig{x) = N, xe€ =¥}

a response interval Rx as,

R, =[jz_:,F A;‘, I vJ’.“] N [0, 1] (4.1.5)
where

a¥ = M (Mo, )
and

vE = MR (Moo, )

Now consider any tape x in =* with lg{x) > N. If we partition
X as x =y z where z¢ ZN , then it follows from (4.1, 3} that

rp(x) is contained in Rz. In general, if

R = U R_,
YEEN Y

then the response to any tape x € Z* with lg(x) > N is contained
in RN . However, the response of tapes whose lengths are less

‘than N may not be contained in RN .

Criterion 2: Any cut point A € PI - RN such that

A £ {rp(x) | xe EN-I} is an eligible isolated cut point,

Example 4.1.2.: Consider the probabilistic automaton (P (S, %, 1, 2)

defined over the alphabet £ = {1, 2} and on the state set §= {1, 2}

by the symbol matrices,
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1 2 1 2

3 1 1 1

1137 7 1 .rz z

M) = L1 | o M@ s | 1 3
27z ‘17 37

By Criterion 1, any cut point \ €[ 0, %) U (% , 1] is isolated.
However, these points are trivial, since they either accept or reject

all tapes in Z* . ILet us now consider all the matrix products of

length two:
(11 57 (5 3]
16 16 8 8
M(l11) = , M(21} = )
5 3 9. 7
8 8 16 16 _]
(7 97 3 5]
16 16 8 8
M(12) = , M(22) =
3 3 21
| 8 8 _ |16 16_| .

. . 5 7 9 11
By Criterion 2, any M€ [0, E) U (1_6' 1_6) U (1_6’ 1], nota

response point IZ or ;—, is an eligible isolated cut point. One
should note that the response intervals have separated and allow

i s . — 7
nontrivial iseclated cut points within (E . -1%) .
We now prove a theorem which focuses on the isolated cut

point problems for quasi-definite automata.

Theorem 4.1.1.: Let (P be a quasi-definite probabilistic automaton

defined over the alphabet £ = {1, 2, ..., OE} and on the state

set S=1{1, 2, ..., n}. Given any rational cut point X, one can
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conclude with a bounded experiment that either N 1is not y -isolated

or A is y*-isclated for any fixed y > 0 and some y¥> 0,

Proof: Givenany € > 0, there is, by the quasi-definite condition,
an integer N{€} such that lg(x) > N and xc¢ Z* imply that

I M(x)]| < €. A particular integer N can be determined for any

€ >0 by Theorem 2.2,1. Let us consider any tape x in =*

with lg{x} > N, Partition x as x =y 2z where lg(z) = N, The
quasgi-definite condition implies that I M(z) ” < €., We now write

the matrix M(z) as a sum

M(z) = U_+N_

where Uz is a primitive idempoctent matrix whose equal rows are
the average of the rows of M(z} and where Nz is such that
| Nz] < ¢, Nowlet P be any {n x n) stochastic matrix and

consgider

PM(z) =P(U +N)=PU +PN =U_ +PN .
z Z z Z Z z

The stochastic condition implies that | PNzl < | Nz] < € . Thus,
if we choose € = y/(2 ®F) then the response rp(x) is contained

n the i x X X
in the interval Rz = [WOUZOF -3 'rroUZOF + 2] .

we wrap a closed y -neighborhood _N_(rp(z), y) about rp(z), then

Hence, if

we enclose the response of rp(y z) for all ye ¥, Consequently,

if we form

R = U ﬁ(rP(X). Y) ’
xeZ N

then we can say that any point X € R is not y -isolated. On the
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other hand, if » € PI - R then we can say that A is Y*-isolated,
where y* is the minimal distance from \ to R,

We complete this section by giving a sufficient condition to
conclude, for any quasi-definite automaton @ with a single
starting state 8 and a single final state Spo that GJ has no
isolated cut points. Let V be any arbitrary (n x1l) vector whose
components v, satisfy 0% v, < 1. We shall call such a vector

a probability vector. We define the range of V, @(V) by

@\(V) - [Vmin’ vmax]

where v_ . and v are the minimal and maximal components
Imnin max

of V. We say that the symbol matrix M(cri) covers V if

n' Vl-na}u:] )

RiMie) V) D [v;

More generally, we say that the set of matrices M(cr.l), o, € z,

covers V if

Rmc v, Riepw

Theorem 4.1.2.: Let (S, Py » 8, sp) bea quasi-definite

probabilistic automaton defined over the alphabet Z ={ Tys Tos sevs O

and on the state set S = {sl. 850 vens sn} . If the symbol matrices

M(u’i), v, € Z cover any probability vector V, then 6) has no

isolated cut points,

Proof: We observe for any tape z € Z; that if the probability

vector V is chosen as the column of M(z) corresponding to the

}
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final state Spo then the range ) @ {V), of V is identical to the
regponse interval, RZ, defined in (4.1.5). One can easily show

using induction on the tape length that

gsince the symbol matrices cover any probability vector. The quasi-
definite condition requires the length L(Rz} of each response
interval Rz to approach 0 as 1lg{z} becomes infinite. Since each
response interval contains at least one response point, it follows

that @ has no isclated cut points.,

Example 4.1.3.: Consider the quasi-definite probabilistic automaton

G) (S, 7 » Sy SZ) defined over the alphabet £ = {0, 1} and on

the state set S = {sl, SZ} by the symbol matrices

M(0} ,  Mil}

a l-a a l-a

Ik
1

We apply the theorem to show that @ has no isoclated cut points if

0< a < 1.
T
1"“’2)

and consider the ranges

Let V = (v be any probability vector with vy = v,

RM(0) V) = [vy, av; +{1 -a)v,]
and

R M(1) V) = [av, +{1 -a)v,, v,]
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which clearly covers V. Similarly, if \2) > Vs then these symbeol
matrices again cover V . Consequently, the theorem implies that

@ has no isolated cut points.

4.2, Topological Approach

The topological approach of this section gives a neat view
of the tape acceptance behavior of probabilistic automata., The
isclated cut-point problem is viewed in a more enlightening setting,
The results of this section focus on the isolated cut point problems

for an arbitrary probabilistic automaton.

Response Model

Let Cp be an arbitrary probabilistic automaton defined
over the alphabet Z = {crl, Oos eees U'OE} and on the state set
s={ Sys Sy sess sn} . We introduce a '"'response model" @
for G) to characterize the response of all tapes in =* interms
of the response of tapes in En-l . The central idea, which
stemmed from a recent paper by J. W. Carlyle[ 3], brings into
consgideration the constraints imposed by the finite state assumption.

We recall that the response of {P to a tape x € =* is defined by

the bilinear form

rp{x) = LN Mix) OF .

Consider any collection of 2Zm (m > n) tapes

Xps Xpo eeny X and Xy Xoo eeny X

from Z* . Collect the response of GD to these tapes into a

"response matrix'' P defined as follows:
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» [

1 X, vea X
— _ - _ 0=
X rp(xlxl) 1'p(1u:l xz) ves :rp(x1 xm)
X, rp(xz;l rp(ngz) P e rp(xz;m)
P - | . . (4. 2.1)
X rp(xm;l } rp(xm;z) ves rp(xm;m)_

The response matrix P hasg the following factorization,
P = QH (4.2.2)

where Q and H are (m xn) and (n x m) matrices respectively

defined by

n

Q= {a |aq

i, . i, .

s M( xi) }
and

H

"
i Y
I
n

M(xj) OF} .

It follows from the factorization (4. 2.2) that the rank of the response
matrix P is no larger than n. Hence, the determinant of P,

denoted by det (P); is zerc, independent of the tapes selected.

Definition 4.2.1.: The rank of the response model G)\ is defined to

be the largest rank r (< n) of the response matrix P that can be

n-1 s

generated from Z If r=n then (R is said to have maximum

rank.

Now consider one collection of 2r tapes

Xy Xpp seey X and Xyy Xy seey X

r r

# -
If follows from a theorem of Carlyle [3 ] that the tapes in T 1

determine the rank of the response model.
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k and k be defined as
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such that the rank of the response matrix P is

r. Let

_ Max
and
— Max -
k = 1< i< ﬁg(xi]} .
Consider two tapes x € zk+1 and x¢ EEH and form the response
matrix P partitioned as
%, X, e x x
X r-rp(xl ;l rp(x]l;c'z) ‘e rp(xlgr) II rp(x:l;)-l
v iy - |
X, rp(xle) rp{xzxz) . rp(xzxr) : rp(xzx)
l
P = * |
I . l
l
X rp(xrxl) rp{xrxz) v rp(xrxr) : rp(x_x)
"'-__--—""':-""--"-_""I-—__-'
x rp(x xl) Tpix xz) ves rplx xr) | rplx x)
B I —

Label the partitioned response matrix P as

We then observe that the response matrix P can be factored as

A B 1 of{la 0 1 AlB@E

P = =

C(x) D cial 1{lo (p-cxat B0 I

. ~1 .
since A exists. Hence, we have

(4. 2.3)
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det (P) = det(A) - det (D - C(x)A™ ' B(X)) = 0 .
Since D is a scalar and det{A) # 0, we have
D = rp(x®) = C(x)a™! B (4. 2. 4)

where lg{xx) =k +k +2 . Thus, the response of tapes in

Ek+F+2 can be determined in terms of the response of tapes in

sktktl o (4.2, 4),

We define YN to be a set of response points, one for each

tape in EN’
YN = {rp(x) | xe EN}

In a similar manner YN denctes the set of response points for
the tapes in EN ,

YN = {rp{x)| X € EN}

The bilinear form in (4. 2. 4) implies that Y can be determined

from Yk+k+l . In general, the linear response transformation

k+k+2

C(x) A_l of (4.2.4) may be considered fixed by determining C(x) A-l

for each tape xe Z . This yields a finite family of responée {row)

k+1

vectors, G{ = {C{x)A-l | xe = } , one for each tape in 2k+1 ,

K+l
N
called the response model. The response model, Ga 'Y — N+1 *

for N> k + k +1; defires the entire tape response of (P recursively
by

Y :{RxB(§)|RXeCR , x€ =T

N+1 N-k }

for N2> k + k+1 = L. We note that this response model can be

used efficiently to carry out the decision algorithm of Theorem 4.1.1.
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Theorem 4.2.1.: Each response vector R, contained in the response

model GD\ has unit row sum.

Proof: Consider the response matrix P partitioned as shown in

(4.2.3)., Each response vector Rx contained in R is defined by

R, = Clx) A7

which implies that

Consequently, if Rx: [r1 Ty «oe rr] then we have

(r1 L M(xl) +r L M{xz) toootrom M{xr) - M(x)) M(xi) OF = 0

2

for each x, (i=1, 2, ..., r). Since Al exists, it follows that
the vectors T M(xi) {i=1, 2, ..., r} are linearly independent.
This implies that there exists a unique vector R_ = [r1 T, ... rr]

such that

Ty M{xl) tr, T M(XZ) taeo From M(xr) =, M(x) .

This in turn implies that Rx satisfies C{x) = RxA . Since the
vectors ™ M(xi) {i=1, 2, ..., r) are stochastic, it follows that
Rx must have unit row sum. It may have, however, some negative
entries.

A simple example is given here to illustrate the essential

features of the response model.
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Example 4.2.1.: Consider a probabilistic automaton @ {5, W s Sy sz)

defined over the alphabet X = {0, 1} and on the state set § = {sl, SZ}

by the symbol matrices,

M(0) = , M1y = .

NES
N
B
N

Choose Xy = ;1 = 0 and Xy = ;Z = 1. The response matrix P in

(4.2.1) is defined for tapes x and x in Z, as

2
0 1 x
0 0 1 rp(0 X)
1 1 -
P = 1 Z Z rp(l x)
x | rp(x0) rp(x1) rp{x x)

where

A = » C(x) = [rp(x0) rp(x1)}]

C S L
B L

and BT(x) = [ rp(0 ;(-) rp(l x}] . The response model (R is

formed by determining for each tape x ¢ EZ . Rx = C(x)A-l as

follows:
- -1 _
Ry = ClOOAT = [1 0]
Ry, = cona™l = [o 1]
] -1 3l
Rig = CUOAT = [4 )
- -1 31
Ry = CANA™ = [7
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The entire tape response of @ is given recursively by

Y, = {RXB(;}[RXECP\,;:_EE

N+1 N-l}

for all N >3 where rp(x x) = R_B(x) .
The response model for this example can be organized into
the following convenient matrix recurrence equation, Define the

partitioned matrices

P, = [B(00), B(0l), B(10), B(11)] ,
- _1—
c{oo)a
Cl = , and
-1
C{lHA
- e
C(O1A
CZ - _1 -
C(11)A
— -
Now if P4 = Cl P3 and P, = C, P3 , then the response model is
given by
' -
Cl[ lDi Pi] - pi+1
f — 1 L
(:Z[Pi Pi] = P {(i=4, 5 ...)
where the matrices Pi+1 and Pi'Jrl contain the response points

for tapes in X, The notation [ P, Pi] denotes a partitioned

l -

matrix formed from Pi and Pi .
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Pseudo-Closure Cperator

The setting for the following development is the probability
interval PI1=[0, 1] . Let Xk denote a set of closed y -neighborhoods

ﬁ( -, ¥), one around each response point in Yk ’

Xk = {ﬁ(rp{x), ¥):ixe Zk} .

Similarly, let Xk denote a set of ¢losed ¥ -neighborhoods N(+, v),

L k
one around each response pointin Y

xK - {N(rpx), v): xe =5} .
The ''response operator" CY : Yk - Xk+l s 1s defined by
c (v9 = Py u MR, vy = X

forall k> L=k+Kk+1 where cf;”(Yk) = x* and WRYN), v) = X, -
The important point to notice here is that the response operator

utilizes the response model R to generate Yk+l from Yk . It

then wraps y -neighborhoods about the points in Yk+1 while retaining

all previously generated neighborhoods. The composite response

operator is defined recursively by

k L k-1, ,L+1 k-2
C, (Y )=C Y = C>7NY
y Y =C o y=Cy

Lt2y o .-y

Consequently, the response operator has the following impertant

nesting property,

cif”(YL) C CE{”(YL) cC ... C C(Yk'l)(YL) Ccf{k’(yL) C ...
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The following discussion centers on the response operator
and pertains to the solvability of the isclated cut-point problems
for an arbitrary probabilistic automaton. Let C\’ and CY+€
denote response operators that enclose the response peints with
¥y and y+€ closed neighborhoods respectively, where € is any
fixed positive number. We shall prove that if one can effectively
decide whether or not CI;(YL) C C$I+€(YL) for all n> N,
then the isclated cut-point problems are recursively solvable. A
cursory examination of the continuity of the linear response model

indicates that such an effective procedure does in fact exist. If

this is true, then the following conjecture would follow:

Conjecture 2.4.2,: For an arbitrary probabilistic automaton, there

exists a finite integer N such that one can decide from C\?_l_e(YL)
that a given cut point A is either y -isolated or not (y+e€}-isolated
for any € » 0,

The following discussion pertains to the above conjecture,.
Case 1: We first cbserve that if there exists an integer N such that

C?(YL) C CSI( YL) for all n > N then we can decide that

a) x e C\I:I[YL) is not vy -isolated

b) \ € PI - CSI(YL) is y -isolated.

Cage 2: If no finite integer N exists such that CI\:(YL) C C‘I;I( YL)
for n > N, then consider the set

n, L
Bn = PI-Cy(Y ) .

Let € be any fixed positive number. If on the one hand, there
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exists for all n an integer N such that the measure of B - B
1 n n-l-Nl

satisfies m(B_ - then there is a finite integer N

>
Bn+N1) -~ %1
such that BN = ¢ . Consequently, the automaton has no y-isolated

cut points. If on the other hand, no integer N, exists such that

. > c s . .
m{Bn Bn+N ) > €3 then we have a limiting situation. Let C and

1 Y
CY +e denote response operators that enclose the response points
with ¥y and y+e closed neighborheoods respectively. Now stop

the closure process when

C::(YL) - C$+E(YL) forall n > N.

This will be true for some finite integer N, since no inteper Nl

. - > > i
exists such that m{Bn Bn+N1] > € for any € 0. In this case,
one can decide that
N L , ,
a) M f£ CY"'G(Y ] is y -isolated

bB) M eC (YL) is not (y +e€)-isolated.



V. CONCLUSIONS

In this chapter we summarize the important original results
obtained. Chapter 2 contains a necessary and sufficient condition
for strict stability (Theorem 2.3.1}. A bounded algorithm is given
in Section 3,3 which efficiently solves the strict stability problem
for an arbitrary probabilistic automaton, The algorithm is
particularly suited for a digital computer, It requires only logical
operations and does not require the multiplication of matrices,
Theorem 2,4,2 gives a sufficient condition for tape acceptance
stability without requiring the automaton to be strictly stable. This
result is essentially a regional stability result, since it gives a
bound on the size of perturbations that can be permitted without
causging tape acceptance instability.

Chapter 3 contains zero-stability results for NQD automata
in terms of their cyclic and algebraic structures. Section 3.2
contains some fundamental properties of the cyclic structure of
NQD automata. These results led to the algorithm given in
Section 3.3 for locating all prime cycling tapes for an arbitrary
probabilistic automaton. Section 3.4 refines the cyclic structure,
so that the minimal nonzero entry in a matrix product does not
approach zero prior to attaining the scrambling condition, Theorem
3.5.1 gives sufficient conditions for zero-stability in terms of the
prime cyclic conditions. The method of proof is similar to that of
Theorem 2.3.1. The crucial point is to prevent the minimal nonzero

entry from having a zero limit prior to attaining the scrambling
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condition, The conditions of the theorem are easily checked by
locating the prime cyclic tapes with the algorithm given in Section
3.3. This result has some important implications in the design of
o-stable probabilistic computers that have a cyclic behavior, It
points out how one can design a nontrivial cyclic probabilistic
computer that is zero-stable, Section 3.6 contains some zero-
stability results in terms of the algebraic structure of NQD
automata. Theorem 3. 6. 4 proves that any zero-reset automaton

is zero-stable. Essentially, a zerc-reset automaton consists of

a finite number of quasi-definite subautomata. Each subautomaton
can compute independently, and each can communicate with any
other by means of the permutation structure. This structure gives
a powerful computing abil‘i.ty to zero-reset automaton. The develop-
ment in Section 3. 6 proved that a monoid set j of (nxn)
stochastic matrices with identity element U is a group, if each
element P e,g has a corresponding reset element P’ e j

such that P Pr..P..v U. This result is important in deciding whether
or not a given set of stochastic matrices is a group. Since group
automata are subsumed by zero-reset automata, we also know

that group automata are zero-stable.

Chapter 4 gives several tests to decide the isoclated cut-
point problems, Theorem 4.1.1 proves for quasi-definite automata
that the isolated cut-point problems can be decided with a bounded
experiment. Theorem 4.1, 2 gives sufficient conditions to imply
that a2 quasi-definite automaton has no isolated cut points. Section

4, 2 gives a neat view of tape response of an arbitrary probabilistic
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automaton. A response model is introduced which defines the entire
response of a probabilistic automaton in terms of the response of
the automaton to short tapes. A pseudo-closure operator is defined
in terms of this response model which encloses the cut points which
are not isolated. Conjecture 2.4, 2 then indicates that the isolated
cut=point problems can be decided in terms of this closure operator
with finite experiments,

Let us conclude by pointing out some interesting and still
open problems which merit further investigation. The bound given
on the lengths of a prime cycling tape was obtained in Lemma 3,2.2
without placing any restrictions on the size of the alphabet. It
would be important to see if one could lower the given bound by
considering the constraints imposed by the alphabet size. The
crucial idea in Theorem 3, 5.1 is to prevent the minimal nonzero
entry from having a zero limit prior to attaining the scrambling
condition. It would be important to investigate extensions of this
idea to a larger class of cyclic automata., The algebraic structure
of NQD automata developed in Section 3.6 has some interesting
implicationg on the computing behavior of NQD automata, It seems
very attractive to pursue this approach to more general algebraic
systems. The development on the isolated cut-point problem
indicates, that it is reasonable to investigate certain properties of
the response model that would decide the isolated cut-point problems.
Finally, we express the need for a procedure for designing a
probabilistic automaton to accept a given set of tapes, T(®, A),

with respect to the cut point X\,
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